Cargando…
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collect...
Autores principales: | Al-Timemy, Ali H., Alzubaidi, Laith, Mosa, Zahraa M., Abdelmotaal, Hazem, Ghaeb, Nebras H., Lavric, Alexandru, Hazarbassanov, Rossen M., Takahashi, Hidenori, Gu, Yuantong, Yousefi, Siamak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217517/ https://www.ncbi.nlm.nih.gov/pubmed/37238174 http://dx.doi.org/10.3390/diagnostics13101689 |
Ejemplares similares
-
Keratoconus Detection-based on Dynamic Corneal Deformation Videos Using Deep Learning
por: Abdelmotaal, Hazem, et al.
Publicado: (2023) -
A Hybrid Deep Learning Construct for Detecting Keratoconus From Corneal Maps
por: Al-Timemy, Ali H., et al.
Publicado: (2021) -
Association between visual field damage and corneal structural parameters
por: Lavric, Alexandru, et al.
Publicado: (2021) -
Deep Transfer Learning with Enhanced Feature Fusion for Detection of Abnormalities in X-ray Images
por: Alammar, Zaenab, et al.
Publicado: (2023) -
KeratoDetect: Keratoconus Detection Algorithm Using Convolutional Neural Networks
por: Lavric, Alexandru, et al.
Publicado: (2019)