Cargando…
Enhancing Basketball Game Outcome Prediction through Fused Graph Convolutional Networks and Random Forest Algorithm
Basketball is a popular sport worldwide, and many researchers have utilized various machine learning models to predict the outcome of basketball games. However, prior research has primarily focused on traditional machine learning models. Furthermore, models that rely on vector inputs tend to ignore...
Autores principales: | Zhao, Kai, Du, Chunjie, Tan, Guangxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217531/ https://www.ncbi.nlm.nih.gov/pubmed/37238520 http://dx.doi.org/10.3390/e25050765 |
Ejemplares similares
-
Random projection forest initialization for graph convolutional networks
por: Alshammari, Mashaan, et al.
Publicado: (2023) -
Graph convolutional networks fusing motif-structure information
por: Wang, Bin, et al.
Publicado: (2022) -
Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
por: Liu, Duanyang, et al.
Publicado: (2021) -
FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction
por: Wen, Gang, et al.
Publicado: (2023) -
FGCN: Image-Fused Point Cloud Semantic Segmentation with Fusion Graph Convolutional Network
por: Zhang, Kun, et al.
Publicado: (2023)