Cargando…
A Review of Partial Information Decomposition in Algorithmic Fairness and Explainability
Partial Information Decomposition (PID) is a body of work within information theory that allows one to quantify the information that several random variables provide about another random variable, either individually (unique information), redundantly (shared information), or only jointly (synergisti...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217569/ https://www.ncbi.nlm.nih.gov/pubmed/37238550 http://dx.doi.org/10.3390/e25050795 |
_version_ | 1785048568566906880 |
---|---|
author | Dutta, Sanghamitra Hamman, Faisal |
author_facet | Dutta, Sanghamitra Hamman, Faisal |
author_sort | Dutta, Sanghamitra |
collection | PubMed |
description | Partial Information Decomposition (PID) is a body of work within information theory that allows one to quantify the information that several random variables provide about another random variable, either individually (unique information), redundantly (shared information), or only jointly (synergistic information). This review article aims to provide a survey of some recent and emerging applications of partial information decomposition in algorithmic fairness and explainability, which are of immense importance given the growing use of machine learning in high-stakes applications. For instance, PID, in conjunction with causality, has enabled the disentanglement of the non-exempt disparity which is the part of the overall disparity that is not due to critical job necessities. Similarly, in federated learning, PID has enabled the quantification of tradeoffs between local and global disparities. We introduce a taxonomy that highlights the role of PID in algorithmic fairness and explainability in three main avenues: (i) Quantifying the legally non-exempt disparity for auditing or training; (ii) Explaining contributions of various features or data points; and (iii) Formalizing tradeoffs among different disparities in federated learning. Lastly, we also review techniques for the estimation of PID measures, as well as discuss some challenges and future directions. |
format | Online Article Text |
id | pubmed-10217569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102175692023-05-27 A Review of Partial Information Decomposition in Algorithmic Fairness and Explainability Dutta, Sanghamitra Hamman, Faisal Entropy (Basel) Review Partial Information Decomposition (PID) is a body of work within information theory that allows one to quantify the information that several random variables provide about another random variable, either individually (unique information), redundantly (shared information), or only jointly (synergistic information). This review article aims to provide a survey of some recent and emerging applications of partial information decomposition in algorithmic fairness and explainability, which are of immense importance given the growing use of machine learning in high-stakes applications. For instance, PID, in conjunction with causality, has enabled the disentanglement of the non-exempt disparity which is the part of the overall disparity that is not due to critical job necessities. Similarly, in federated learning, PID has enabled the quantification of tradeoffs between local and global disparities. We introduce a taxonomy that highlights the role of PID in algorithmic fairness and explainability in three main avenues: (i) Quantifying the legally non-exempt disparity for auditing or training; (ii) Explaining contributions of various features or data points; and (iii) Formalizing tradeoffs among different disparities in federated learning. Lastly, we also review techniques for the estimation of PID measures, as well as discuss some challenges and future directions. MDPI 2023-05-13 /pmc/articles/PMC10217569/ /pubmed/37238550 http://dx.doi.org/10.3390/e25050795 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Dutta, Sanghamitra Hamman, Faisal A Review of Partial Information Decomposition in Algorithmic Fairness and Explainability |
title | A Review of Partial Information Decomposition in Algorithmic Fairness and Explainability |
title_full | A Review of Partial Information Decomposition in Algorithmic Fairness and Explainability |
title_fullStr | A Review of Partial Information Decomposition in Algorithmic Fairness and Explainability |
title_full_unstemmed | A Review of Partial Information Decomposition in Algorithmic Fairness and Explainability |
title_short | A Review of Partial Information Decomposition in Algorithmic Fairness and Explainability |
title_sort | review of partial information decomposition in algorithmic fairness and explainability |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217569/ https://www.ncbi.nlm.nih.gov/pubmed/37238550 http://dx.doi.org/10.3390/e25050795 |
work_keys_str_mv | AT duttasanghamitra areviewofpartialinformationdecompositioninalgorithmicfairnessandexplainability AT hammanfaisal areviewofpartialinformationdecompositioninalgorithmicfairnessandexplainability AT duttasanghamitra reviewofpartialinformationdecompositioninalgorithmicfairnessandexplainability AT hammanfaisal reviewofpartialinformationdecompositioninalgorithmicfairnessandexplainability |