Cargando…
A Plant-Based Animal Fat Analog Produced by an Emulsion Gel of Alginate and Pea Protein
As the market for plant-based meat analogs grows, the development of plant-based animal fat analogs has become increasingly important. In this study, we propose an approach by developing a gelled emulsion based on sodium alginate, soybean oil (SO), and pea protein isolate. Formulations containing 15...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217620/ https://www.ncbi.nlm.nih.gov/pubmed/37232985 http://dx.doi.org/10.3390/gels9050393 |
Sumario: | As the market for plant-based meat analogs grows, the development of plant-based animal fat analogs has become increasingly important. In this study, we propose an approach by developing a gelled emulsion based on sodium alginate, soybean oil (SO), and pea protein isolate. Formulations containing 15% to 70% (w/w) SO were successfully produced without phase inversion. The addition of more SO resulted in pre-gelled emulsions with a more elastic behavior. After the emulsion was gelled in the presence of calcium, the color of the gelled emulsion changed to light yellow, and the formulation containing 70% SO exhibited a color most similar to actual beef fat trimming. The lightness and yellowness values were greatly influenced by the concentrations of both SO and pea protein. Microscopic images revealed that pea protein formed an interfacial film around the oil droplets, and the oil was more tightly packed at higher oil concentrations. Differential scanning calorimetry showed that lipid crystallization of the gelled SO was influenced by the confinement of the alginate gelation, but the melting behavior was like that of free SO. FTIR spectrum analysis indicated a potential interaction between alginate and pea protein, but the functional groups of SO were unchanged. Under mild heating conditions, gelled SO exhibited an oil loss similar to that observed in actual beef trims. The developed product has the potential to mimic the appearance and slow-rendering melting attribute of real animal fat. |
---|