Cargando…
Physicochemical and In Vitro Digestion Properties of Curcumin-Loaded Solid Lipid Nanoparticles with Different Solid Lipids and Emulsifiers
Curcumin-loaded solid lipid nanoparticles (Cur-SLN) were prepared using medium- and long chain diacylglycerol (MLCD) or glycerol tripalmitate (TP) as lipid matrix and three kinds of surfactants including Tween 20 (T20), quillaja saponin (SQ) and rhamnolipid (Rha). The MLCD-based SLNs had a smaller s...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217647/ https://www.ncbi.nlm.nih.gov/pubmed/37238863 http://dx.doi.org/10.3390/foods12102045 |
_version_ | 1785048587588075520 |
---|---|
author | Yu, Yasi Chen, Dechu Lee, Yee Ying Chen, Nannan Wang, Yong Qiu, Chaoying |
author_facet | Yu, Yasi Chen, Dechu Lee, Yee Ying Chen, Nannan Wang, Yong Qiu, Chaoying |
author_sort | Yu, Yasi |
collection | PubMed |
description | Curcumin-loaded solid lipid nanoparticles (Cur-SLN) were prepared using medium- and long chain diacylglycerol (MLCD) or glycerol tripalmitate (TP) as lipid matrix and three kinds of surfactants including Tween 20 (T20), quillaja saponin (SQ) and rhamnolipid (Rha). The MLCD-based SLNs had a smaller size and lower surface charge than TP-SLNs with a Cur encapsulation efficiency of 87.54–95.32% and the Rha-based SLNs exhibited a small size but low stability to pH decreases and ionic strength. Thermal analysis and X-ray diffraction results confirmed that the SLNs with different lipid cores showed varying structures, melting and crystallization profiles. The emulsifiers slightly impacted the crystal polymorphism of MLCD-SLNs but largely influenced that of TP-SLNs. Meanwhile, the polymorphism transition was less significant for MLCD-SLNs, which accounted for the better stabilization of particle size and higher encapsulation efficiency of MLCD-SLNs during storage. In vitro studies showed that emulsifier formulation greatly impacted on the Cur bioavailability, whereby T20-SLNs showed much higher digestibility and bioavailability than that of SQ- and Rha-SLNs possibly due to the difference in the interfacial composition. Mathematical modeling analysis of the membrane release further confirmed that Cur was mainly released from the intestinal phase and T20-SLNs showed a faster release rate compared with other formulations. This work contributes to a better understanding of the performance of MLCD in lipophilic compound-loaded SLNs and has important implications for the rational design of lipid nanocarriers and in instructing their application in functional food products. |
format | Online Article Text |
id | pubmed-10217647 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102176472023-05-27 Physicochemical and In Vitro Digestion Properties of Curcumin-Loaded Solid Lipid Nanoparticles with Different Solid Lipids and Emulsifiers Yu, Yasi Chen, Dechu Lee, Yee Ying Chen, Nannan Wang, Yong Qiu, Chaoying Foods Article Curcumin-loaded solid lipid nanoparticles (Cur-SLN) were prepared using medium- and long chain diacylglycerol (MLCD) or glycerol tripalmitate (TP) as lipid matrix and three kinds of surfactants including Tween 20 (T20), quillaja saponin (SQ) and rhamnolipid (Rha). The MLCD-based SLNs had a smaller size and lower surface charge than TP-SLNs with a Cur encapsulation efficiency of 87.54–95.32% and the Rha-based SLNs exhibited a small size but low stability to pH decreases and ionic strength. Thermal analysis and X-ray diffraction results confirmed that the SLNs with different lipid cores showed varying structures, melting and crystallization profiles. The emulsifiers slightly impacted the crystal polymorphism of MLCD-SLNs but largely influenced that of TP-SLNs. Meanwhile, the polymorphism transition was less significant for MLCD-SLNs, which accounted for the better stabilization of particle size and higher encapsulation efficiency of MLCD-SLNs during storage. In vitro studies showed that emulsifier formulation greatly impacted on the Cur bioavailability, whereby T20-SLNs showed much higher digestibility and bioavailability than that of SQ- and Rha-SLNs possibly due to the difference in the interfacial composition. Mathematical modeling analysis of the membrane release further confirmed that Cur was mainly released from the intestinal phase and T20-SLNs showed a faster release rate compared with other formulations. This work contributes to a better understanding of the performance of MLCD in lipophilic compound-loaded SLNs and has important implications for the rational design of lipid nanocarriers and in instructing their application in functional food products. MDPI 2023-05-18 /pmc/articles/PMC10217647/ /pubmed/37238863 http://dx.doi.org/10.3390/foods12102045 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Yasi Chen, Dechu Lee, Yee Ying Chen, Nannan Wang, Yong Qiu, Chaoying Physicochemical and In Vitro Digestion Properties of Curcumin-Loaded Solid Lipid Nanoparticles with Different Solid Lipids and Emulsifiers |
title | Physicochemical and In Vitro Digestion Properties of Curcumin-Loaded Solid Lipid Nanoparticles with Different Solid Lipids and Emulsifiers |
title_full | Physicochemical and In Vitro Digestion Properties of Curcumin-Loaded Solid Lipid Nanoparticles with Different Solid Lipids and Emulsifiers |
title_fullStr | Physicochemical and In Vitro Digestion Properties of Curcumin-Loaded Solid Lipid Nanoparticles with Different Solid Lipids and Emulsifiers |
title_full_unstemmed | Physicochemical and In Vitro Digestion Properties of Curcumin-Loaded Solid Lipid Nanoparticles with Different Solid Lipids and Emulsifiers |
title_short | Physicochemical and In Vitro Digestion Properties of Curcumin-Loaded Solid Lipid Nanoparticles with Different Solid Lipids and Emulsifiers |
title_sort | physicochemical and in vitro digestion properties of curcumin-loaded solid lipid nanoparticles with different solid lipids and emulsifiers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217647/ https://www.ncbi.nlm.nih.gov/pubmed/37238863 http://dx.doi.org/10.3390/foods12102045 |
work_keys_str_mv | AT yuyasi physicochemicalandinvitrodigestionpropertiesofcurcuminloadedsolidlipidnanoparticleswithdifferentsolidlipidsandemulsifiers AT chendechu physicochemicalandinvitrodigestionpropertiesofcurcuminloadedsolidlipidnanoparticleswithdifferentsolidlipidsandemulsifiers AT leeyeeying physicochemicalandinvitrodigestionpropertiesofcurcuminloadedsolidlipidnanoparticleswithdifferentsolidlipidsandemulsifiers AT chennannan physicochemicalandinvitrodigestionpropertiesofcurcuminloadedsolidlipidnanoparticleswithdifferentsolidlipidsandemulsifiers AT wangyong physicochemicalandinvitrodigestionpropertiesofcurcuminloadedsolidlipidnanoparticleswithdifferentsolidlipidsandemulsifiers AT qiuchaoying physicochemicalandinvitrodigestionpropertiesofcurcuminloadedsolidlipidnanoparticleswithdifferentsolidlipidsandemulsifiers |