Cargando…

Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold

We studied the dynamical behaviors of degenerate stochastic differential equations (SDEs). We selected an auxiliary Fisher information functional as the Lyapunov functional. Using generalized Fisher information, we conducted the Lyapunov exponential convergence analysis of degenerate SDEs. We derive...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Qi, Li, Wuchen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217677/
https://www.ncbi.nlm.nih.gov/pubmed/37238541
http://dx.doi.org/10.3390/e25050786
_version_ 1785048594782355456
author Feng, Qi
Li, Wuchen
author_facet Feng, Qi
Li, Wuchen
author_sort Feng, Qi
collection PubMed
description We studied the dynamical behaviors of degenerate stochastic differential equations (SDEs). We selected an auxiliary Fisher information functional as the Lyapunov functional. Using generalized Fisher information, we conducted the Lyapunov exponential convergence analysis of degenerate SDEs. We derived the convergence rate condition by generalized Gamma calculus. Examples of the generalized Bochner’s formula are provided in the Heisenberg group, displacement group, and Martinet sub-Riemannian structure. We show that the generalized Bochner’s formula follows a generalized second-order calculus of Kullback–Leibler divergence in density space embedded with a sub-Riemannian-type optimal transport metric.
format Online
Article
Text
id pubmed-10217677
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102176772023-05-27 Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold Feng, Qi Li, Wuchen Entropy (Basel) Article We studied the dynamical behaviors of degenerate stochastic differential equations (SDEs). We selected an auxiliary Fisher information functional as the Lyapunov functional. Using generalized Fisher information, we conducted the Lyapunov exponential convergence analysis of degenerate SDEs. We derived the convergence rate condition by generalized Gamma calculus. Examples of the generalized Bochner’s formula are provided in the Heisenberg group, displacement group, and Martinet sub-Riemannian structure. We show that the generalized Bochner’s formula follows a generalized second-order calculus of Kullback–Leibler divergence in density space embedded with a sub-Riemannian-type optimal transport metric. MDPI 2023-05-11 /pmc/articles/PMC10217677/ /pubmed/37238541 http://dx.doi.org/10.3390/e25050786 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Feng, Qi
Li, Wuchen
Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold
title Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold
title_full Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold
title_fullStr Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold
title_full_unstemmed Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold
title_short Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold
title_sort entropy dissipation for degenerate stochastic differential equations via sub-riemannian density manifold
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217677/
https://www.ncbi.nlm.nih.gov/pubmed/37238541
http://dx.doi.org/10.3390/e25050786
work_keys_str_mv AT fengqi entropydissipationfordegeneratestochasticdifferentialequationsviasubriemanniandensitymanifold
AT liwuchen entropydissipationfordegeneratestochasticdifferentialequationsviasubriemanniandensitymanifold