Cargando…
Electroencephalography-Based Depression Detection Using Multiple Machine Learning Techniques
The growth of biomedical engineering has made depression diagnosis via electroencephalography (EEG) a trendy issue. The two significant challenges to this application are EEG signals’ complexity and non-stationarity. Additionally, the effects caused by individual variances may hamper the generalizat...
Autores principales: | Ksibi, Amel, Zakariah, Mohammed, Menzli, Leila Jamel, Saidani, Oumaima, Almuqren, Latifah, Hanafieh, Rosy Awny Mohamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217709/ https://www.ncbi.nlm.nih.gov/pubmed/37238263 http://dx.doi.org/10.3390/diagnostics13101779 |
Ejemplares similares
-
Cervical cancer detection using K nearest neighbor imputer and stacked ensemble learningmodel
por: Chen, Xiaoyuan, et al.
Publicado: (2023) -
IoT and Ensemble Long-Short-Term-Memory-Based Evapotranspiration Forecasting for Riyadh
por: Nauman, Muhammad Asif, et al.
Publicado: (2023) -
AraCust: a Saudi Telecom Tweets corpus for sentiment analysis
por: Almuqren, Latifah, et al.
Publicado: (2021) -
Improved Analysis of COVID-19 Influenced Pneumonia from the Chest X-Rays Using Fine-Tuned Residual Networks
por: Ksibi, Amel, et al.
Publicado: (2022) -
Investigation of open educational resources adoption in higher education using Rogers’ diffusion of innovation theory
por: Menzli, Leila Jamel, et al.
Publicado: (2022)