Cargando…

Japanese Flounder pol-miR-155 Is Involved in Edwardsiella tarda Infection via ATG3

MicroRNAs (miRNAs) are small RNA molecules that function in the post-transcriptionally regulation of the expression of diverse genes, including those involved in immune defense. Edwardsiella tarda can infect a broad range of hosts and cause severe disease in aquatic species, including Japanese floun...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhanwei, Guan, Xiaolu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217962/
https://www.ncbi.nlm.nih.gov/pubmed/37239318
http://dx.doi.org/10.3390/genes14050958
Descripción
Sumario:MicroRNAs (miRNAs) are small RNA molecules that function in the post-transcriptionally regulation of the expression of diverse genes, including those involved in immune defense. Edwardsiella tarda can infect a broad range of hosts and cause severe disease in aquatic species, including Japanese flounder (Paralichthys olivaceus). In this study, we examined the regulation mechanism of a flounder miRNA, pol-miR-155, during the infection of E. tarda. Pol-miR-155 was identified to target flounder ATG3. Overexpression of pol-miR-155 or knockdown of ATG3 expression suppressed autophagy and promoted the intracellular replication of E. tarda in flounder cells. Overexpression of pol-miR-155 activated the NF-κB signaling pathway and further promoted the expression of downstream immune related genes of interleukin (IL)-6 and IL-8. These results unraveled the regulatory effect of pol-miR-155 in autophagy and in E. tarda infection.