Cargando…
A Machine Learning Approach Reveals Distinct Predictors of Vaping Dependence for Adolescent Daily and Non-Daily Vapers in the COVID-19 Era
Since 2016, there has been a substantial rise in e-cigarette (vaping) dependence among young people. In this prospective cohort study, we aimed to identify the different predictors of vaping dependence over 3 months among adolescents who were baseline daily and non-daily vapers. We recruited ever-va...
Autores principales: | Singh, Ishmeet, Valavil Punnapuzha, Varna, Mitsakakis, Nicholas, Fu, Rui, Chaiton, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217978/ https://www.ncbi.nlm.nih.gov/pubmed/37239751 http://dx.doi.org/10.3390/healthcare11101465 |
Ejemplares similares
-
Predictors of perceived success in quitting smoking by vaping: A machine learning approach
por: Fu, Rui, et al.
Publicado: (2022) -
Adolescents’ Use of Nicotine-Free and Nicotine E-Cigarettes: A Longitudinal Study of Vaping Transitions and Vaper Characteristics
por: Tokle, Rikke, et al.
Publicado: (2021) -
Where Do Vapers Buy Their Vaping Supplies? Findings from the International Tobacco Control (ITC) 4 Country Smoking and Vaping Survey
por: Braak, David C., et al.
Publicado: (2019) -
“Don’t Know” Responses for Nicotine Vaping Product Features among Adult Vapers: Findings from the 2018 and 2020 ITC Four Country Smoking and Vaping Surveys
por: Felicione, Nicholas J., et al.
Publicado: (2021) -
Vaping Expectancies: A Qualitative Study among Young Adult Nonusers, Smokers, Vapers, and Dual Users
por: Harrell, Paul T, et al.
Publicado: (2019)