Cargando…
Multifunctional Zn(II) Coordination Polymer as Highly Selective Fluorescent Sensor and Adsorbent for Dyes
A new Zn(II)-based coordination polymer (1) comprising the Schiff base ligand obtained by the condensation of 5-aminosalicylic acid and salicylaldehyde has been synthesized. This newly synthesized compound has been characterized by analytical and spectroscopic methods, and finally, by single-crystal...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217995/ https://www.ncbi.nlm.nih.gov/pubmed/37239860 http://dx.doi.org/10.3390/ijms24108512 |
_version_ | 1785048669062430720 |
---|---|
author | Muddassir, Mohd. Alarifi, Abdullah Abduh, Naaser A. Y. Saeed, Waseem Sharaf Karami, Abdulnasser Mahmoud Afzal, Mohd. |
author_facet | Muddassir, Mohd. Alarifi, Abdullah Abduh, Naaser A. Y. Saeed, Waseem Sharaf Karami, Abdulnasser Mahmoud Afzal, Mohd. |
author_sort | Muddassir, Mohd. |
collection | PubMed |
description | A new Zn(II)-based coordination polymer (1) comprising the Schiff base ligand obtained by the condensation of 5-aminosalicylic acid and salicylaldehyde has been synthesized. This newly synthesized compound has been characterized by analytical and spectroscopic methods, and finally, by single-crystal X-ray diffraction technique in this study. The X-ray analysis reveals a distorted tetrahedral environment around the central Zn(II) center. This compound has been used as a sensitive and selective fluorescent sensor for acetone and Ag(+) cations. The photoluminescence measurements indicate that in the presence of acetone, the emission intensity of 1 displays quenching at room temperature. However, other organic solvents caused meagre changes in the emission intensity of 1. Additionally, the fluorescence intensity of 1 has been examined in the presence of different ketones viz. cyclohexanone, 4-heptanone, and 5-nonanone, to assess the interaction between the C=O group of the ketones and the molecular framework of 1. Moreover, 1 displays a selective recognition of Ag(+) in the aqueous medium by an enhancement in its fluorescence intensity, representing its high sensitivity for the detection of Ag(+) ions in a water sample. Additionally, 1 displays the selective adsorption of cationic dyes (methylene blue and rhodamine B). Hence, 1 showcases its potential as an excellent luminescent probe to detect acetone, other ketones, and Ag(+) with an exceptional selectivity, and displaying a selective adsorption of cationic dye molecules. |
format | Online Article Text |
id | pubmed-10217995 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102179952023-05-27 Multifunctional Zn(II) Coordination Polymer as Highly Selective Fluorescent Sensor and Adsorbent for Dyes Muddassir, Mohd. Alarifi, Abdullah Abduh, Naaser A. Y. Saeed, Waseem Sharaf Karami, Abdulnasser Mahmoud Afzal, Mohd. Int J Mol Sci Article A new Zn(II)-based coordination polymer (1) comprising the Schiff base ligand obtained by the condensation of 5-aminosalicylic acid and salicylaldehyde has been synthesized. This newly synthesized compound has been characterized by analytical and spectroscopic methods, and finally, by single-crystal X-ray diffraction technique in this study. The X-ray analysis reveals a distorted tetrahedral environment around the central Zn(II) center. This compound has been used as a sensitive and selective fluorescent sensor for acetone and Ag(+) cations. The photoluminescence measurements indicate that in the presence of acetone, the emission intensity of 1 displays quenching at room temperature. However, other organic solvents caused meagre changes in the emission intensity of 1. Additionally, the fluorescence intensity of 1 has been examined in the presence of different ketones viz. cyclohexanone, 4-heptanone, and 5-nonanone, to assess the interaction between the C=O group of the ketones and the molecular framework of 1. Moreover, 1 displays a selective recognition of Ag(+) in the aqueous medium by an enhancement in its fluorescence intensity, representing its high sensitivity for the detection of Ag(+) ions in a water sample. Additionally, 1 displays the selective adsorption of cationic dyes (methylene blue and rhodamine B). Hence, 1 showcases its potential as an excellent luminescent probe to detect acetone, other ketones, and Ag(+) with an exceptional selectivity, and displaying a selective adsorption of cationic dye molecules. MDPI 2023-05-10 /pmc/articles/PMC10217995/ /pubmed/37239860 http://dx.doi.org/10.3390/ijms24108512 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Muddassir, Mohd. Alarifi, Abdullah Abduh, Naaser A. Y. Saeed, Waseem Sharaf Karami, Abdulnasser Mahmoud Afzal, Mohd. Multifunctional Zn(II) Coordination Polymer as Highly Selective Fluorescent Sensor and Adsorbent for Dyes |
title | Multifunctional Zn(II) Coordination Polymer as Highly Selective Fluorescent Sensor and Adsorbent for Dyes |
title_full | Multifunctional Zn(II) Coordination Polymer as Highly Selective Fluorescent Sensor and Adsorbent for Dyes |
title_fullStr | Multifunctional Zn(II) Coordination Polymer as Highly Selective Fluorescent Sensor and Adsorbent for Dyes |
title_full_unstemmed | Multifunctional Zn(II) Coordination Polymer as Highly Selective Fluorescent Sensor and Adsorbent for Dyes |
title_short | Multifunctional Zn(II) Coordination Polymer as Highly Selective Fluorescent Sensor and Adsorbent for Dyes |
title_sort | multifunctional zn(ii) coordination polymer as highly selective fluorescent sensor and adsorbent for dyes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217995/ https://www.ncbi.nlm.nih.gov/pubmed/37239860 http://dx.doi.org/10.3390/ijms24108512 |
work_keys_str_mv | AT muddassirmohd multifunctionalzniicoordinationpolymerashighlyselectivefluorescentsensorandadsorbentfordyes AT alarifiabdullah multifunctionalzniicoordinationpolymerashighlyselectivefluorescentsensorandadsorbentfordyes AT abduhnaaseray multifunctionalzniicoordinationpolymerashighlyselectivefluorescentsensorandadsorbentfordyes AT saeedwaseemsharaf multifunctionalzniicoordinationpolymerashighlyselectivefluorescentsensorandadsorbentfordyes AT karamiabdulnassermahmoud multifunctionalzniicoordinationpolymerashighlyselectivefluorescentsensorandadsorbentfordyes AT afzalmohd multifunctionalzniicoordinationpolymerashighlyselectivefluorescentsensorandadsorbentfordyes |