Cargando…
Fusion-Extracted Features by Deep Networks for Improved COVID-19 Classification with Chest X-ray Radiography
Convolutional neural networks (CNNs) have shown promise in accurately diagnosing coronavirus disease 2019 (COVID-19) and bacterial pneumonia using chest X-ray images. However, determining the optimal feature extraction approach is challenging. This study investigates the use of fusion-extracted feat...
Autores principales: | Lin, Kuo-Hsuan, Lu, Nan-Han, Okamoto, Takahide, Huang, Yung-Hui, Liu, Kuo-Ying, Matsushima, Akari, Chang, Che-Cheng, Chen, Tai-Been |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218019/ https://www.ncbi.nlm.nih.gov/pubmed/37239653 http://dx.doi.org/10.3390/healthcare11101367 |
Ejemplares similares
-
Deep Transfer Learning for the Multilabel Classification of Chest X-ray Images
por: Huang, Guan-Hua, et al.
Publicado: (2022) -
Deep Learning Classification of Tuberculosis Chest X-rays
por: Goswami, Kartik K, et al.
Publicado: (2023) -
Deep Ensemble Learning for the Automatic Detection of Pneumoconiosis in Coal Worker’s Chest X-ray Radiography
por: Devnath, Liton, et al.
Publicado: (2022) -
Optimization of tube voltage in X-ray dark-field chest radiography
por: Sauter, Andreas P., et al.
Publicado: (2019) -
In-vivo X-ray Dark-Field Chest Radiography of a Pig
por: Gromann, Lukas B., et al.
Publicado: (2017)