Cargando…
PEMT Mediates Hepatitis C Virus-Induced Steatosis, Explains Genotype-Specific Phenotypes and Supports Virus Replication
The hepatitis C virus (HCV) relies on cellular lipid pathways for virus replication and also induces liver steatosis, but the mechanisms involved are not clear. We performed a quantitative lipidomics analysis of virus-infected cells by combining high-performance thin-layer chromatography (HPTLC) and...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218061/ https://www.ncbi.nlm.nih.gov/pubmed/37240132 http://dx.doi.org/10.3390/ijms24108781 |
_version_ | 1785048684089573376 |
---|---|
author | Abomughaid, Mosleh Tay, Enoch S. E. Pickford, Russell Malladi, Chandra Read, Scott A. Coorssen, Jens R. Gloss, Brian S. George, Jacob Douglas, Mark W. |
author_facet | Abomughaid, Mosleh Tay, Enoch S. E. Pickford, Russell Malladi, Chandra Read, Scott A. Coorssen, Jens R. Gloss, Brian S. George, Jacob Douglas, Mark W. |
author_sort | Abomughaid, Mosleh |
collection | PubMed |
description | The hepatitis C virus (HCV) relies on cellular lipid pathways for virus replication and also induces liver steatosis, but the mechanisms involved are not clear. We performed a quantitative lipidomics analysis of virus-infected cells by combining high-performance thin-layer chromatography (HPTLC) and mass spectrometry, using an established HCV cell culture model and subcellular fractionation. Neutral lipid and phospholipids were increased in the HCV-infected cells; in the endoplasmic reticulum there was an ~four-fold increase in free cholesterol and an ~three-fold increase in phosphatidyl choline (p < 0.05). The increase in phosphatidyl choline was due to the induction of a non-canonical synthesis pathway involving phosphatidyl ethanolamine transferase (PEMT). An HCV infection induced expression of PEMT while knocking down PEMT with siRNA inhibited virus replication. As well as supporting virus replication, PEMT mediates steatosis. Consistently, HCV induced the expression of the pro-lipogenic genes SREBP 1c and DGAT1 while inhibiting the expression of MTP, promoting lipid accumulation. Knocking down PEMT reversed these changes and reduced the lipid content in virus-infected cells. Interestingly, PEMT expression was over 50% higher in liver biopsies from people infected with the HCV genotype 3 than 1, and three times higher than in people with chronic hepatitis B, suggesting that this may account for genotype-dependent differences in the prevalence of hepatic steatosis. PEMT is a key enzyme for promoting the accumulation of lipids in HCV-infected cells and supports virus replication. The induction of PEMT may account for virus genotype specific differences in hepatic steatosis. |
format | Online Article Text |
id | pubmed-10218061 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102180612023-05-27 PEMT Mediates Hepatitis C Virus-Induced Steatosis, Explains Genotype-Specific Phenotypes and Supports Virus Replication Abomughaid, Mosleh Tay, Enoch S. E. Pickford, Russell Malladi, Chandra Read, Scott A. Coorssen, Jens R. Gloss, Brian S. George, Jacob Douglas, Mark W. Int J Mol Sci Article The hepatitis C virus (HCV) relies on cellular lipid pathways for virus replication and also induces liver steatosis, but the mechanisms involved are not clear. We performed a quantitative lipidomics analysis of virus-infected cells by combining high-performance thin-layer chromatography (HPTLC) and mass spectrometry, using an established HCV cell culture model and subcellular fractionation. Neutral lipid and phospholipids were increased in the HCV-infected cells; in the endoplasmic reticulum there was an ~four-fold increase in free cholesterol and an ~three-fold increase in phosphatidyl choline (p < 0.05). The increase in phosphatidyl choline was due to the induction of a non-canonical synthesis pathway involving phosphatidyl ethanolamine transferase (PEMT). An HCV infection induced expression of PEMT while knocking down PEMT with siRNA inhibited virus replication. As well as supporting virus replication, PEMT mediates steatosis. Consistently, HCV induced the expression of the pro-lipogenic genes SREBP 1c and DGAT1 while inhibiting the expression of MTP, promoting lipid accumulation. Knocking down PEMT reversed these changes and reduced the lipid content in virus-infected cells. Interestingly, PEMT expression was over 50% higher in liver biopsies from people infected with the HCV genotype 3 than 1, and three times higher than in people with chronic hepatitis B, suggesting that this may account for genotype-dependent differences in the prevalence of hepatic steatosis. PEMT is a key enzyme for promoting the accumulation of lipids in HCV-infected cells and supports virus replication. The induction of PEMT may account for virus genotype specific differences in hepatic steatosis. MDPI 2023-05-15 /pmc/articles/PMC10218061/ /pubmed/37240132 http://dx.doi.org/10.3390/ijms24108781 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Abomughaid, Mosleh Tay, Enoch S. E. Pickford, Russell Malladi, Chandra Read, Scott A. Coorssen, Jens R. Gloss, Brian S. George, Jacob Douglas, Mark W. PEMT Mediates Hepatitis C Virus-Induced Steatosis, Explains Genotype-Specific Phenotypes and Supports Virus Replication |
title | PEMT Mediates Hepatitis C Virus-Induced Steatosis, Explains Genotype-Specific Phenotypes and Supports Virus Replication |
title_full | PEMT Mediates Hepatitis C Virus-Induced Steatosis, Explains Genotype-Specific Phenotypes and Supports Virus Replication |
title_fullStr | PEMT Mediates Hepatitis C Virus-Induced Steatosis, Explains Genotype-Specific Phenotypes and Supports Virus Replication |
title_full_unstemmed | PEMT Mediates Hepatitis C Virus-Induced Steatosis, Explains Genotype-Specific Phenotypes and Supports Virus Replication |
title_short | PEMT Mediates Hepatitis C Virus-Induced Steatosis, Explains Genotype-Specific Phenotypes and Supports Virus Replication |
title_sort | pemt mediates hepatitis c virus-induced steatosis, explains genotype-specific phenotypes and supports virus replication |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218061/ https://www.ncbi.nlm.nih.gov/pubmed/37240132 http://dx.doi.org/10.3390/ijms24108781 |
work_keys_str_mv | AT abomughaidmosleh pemtmediateshepatitiscvirusinducedsteatosisexplainsgenotypespecificphenotypesandsupportsvirusreplication AT tayenochse pemtmediateshepatitiscvirusinducedsteatosisexplainsgenotypespecificphenotypesandsupportsvirusreplication AT pickfordrussell pemtmediateshepatitiscvirusinducedsteatosisexplainsgenotypespecificphenotypesandsupportsvirusreplication AT malladichandra pemtmediateshepatitiscvirusinducedsteatosisexplainsgenotypespecificphenotypesandsupportsvirusreplication AT readscotta pemtmediateshepatitiscvirusinducedsteatosisexplainsgenotypespecificphenotypesandsupportsvirusreplication AT coorssenjensr pemtmediateshepatitiscvirusinducedsteatosisexplainsgenotypespecificphenotypesandsupportsvirusreplication AT glossbrians pemtmediateshepatitiscvirusinducedsteatosisexplainsgenotypespecificphenotypesandsupportsvirusreplication AT georgejacob pemtmediateshepatitiscvirusinducedsteatosisexplainsgenotypespecificphenotypesandsupportsvirusreplication AT douglasmarkw pemtmediateshepatitiscvirusinducedsteatosisexplainsgenotypespecificphenotypesandsupportsvirusreplication |