Cargando…

Exosomes Derived from Adipose Tissue-Derived Mesenchymal Stromal Cells Prevent Medication-Related Osteonecrosis of the Jaw through IL-1RA

Medication-related osteonecrosis of the jaw (MRONJ) is a severe disease with unclear pathogenesis. Adipose tissue-derived mesenchymal stromal cells (MSC(AT)s) serve as a special source for cell therapy. Herein, we explored whether exosomes (Exo) derived from MSC(AT)s promote primary gingival wound h...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Yi, Dong, Xian, Wang, Xinyu, Wang, Jie, Chen, Shuo, He, Yang, An, Jingang, He, Linhai, Zhang, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218172/
https://www.ncbi.nlm.nih.gov/pubmed/37240036
http://dx.doi.org/10.3390/ijms24108694
Descripción
Sumario:Medication-related osteonecrosis of the jaw (MRONJ) is a severe disease with unclear pathogenesis. Adipose tissue-derived mesenchymal stromal cells (MSC(AT)s) serve as a special source for cell therapy. Herein, we explored whether exosomes (Exo) derived from MSC(AT)s promote primary gingival wound healing and prevent MRONJ. An MRONJ mice model was constructed using zoledronate (Zol) administration and tooth extraction. Exosomes were collected from the conditioned medium (CM) of MSC(AT)s (MSC(AT)s-Exo) and locally administered into the tooth sockets. Interleukin-1 receptor antagonist (IL-1RA)-siRNA was used to knock down the expression of IL-1RA in MSC(AT)s-Exo. Clinical observations, micro-computed tomography (microCT), and histological analysis were used to evaluate the therapeutic effects in vivo. In addition, the effect of exosomes on the biological behavior of human gingival fibroblasts (HGFs) was evaluated in vitro. MSC(AT)s-Exo accelerated primary gingival wound healing and bone regeneration in tooth sockets and prevented MRONJ. Moreover, MSC(AT)s-Exo increased IL-1RA expression and decreased interleukin-1 beta (IL-1β) and tumor necrosis factor-α (TNF-α) expression in the gingival tissue. The sequent rescue assay showed that the effects of preventing MRONJ in vivo and improving the migration and collagen synthesis abilities of zoledronate-affected HGFs in vitro were partially impaired in the IL-1RA-deficient exosome group. Our results indicated that MSC(AT)s-Exo might prevent the onset of MRONJ via an IL-1RA-mediated anti-inflammatory effect in the gingiva wound and improve the migration and collagen synthesis abilities of HGFs.