Cargando…
COVID-19 Vaccine Hesitancy: A Global Public Health and Risk Modelling Framework Using an Environmental Deep Neural Network, Sentiment Classification with Text Mining and Emotional Reactions from COVID-19 Vaccination Tweets
Popular social media platforms, such as Twitter, have become an excellent source of information with their swift information dissemination. Individuals with different backgrounds convey their opinions through social media platforms. Consequently, these platforms have become a profound instrument for...
Autores principales: | Qorib, Miftahul, Oladunni, Timothy, Denis, Max, Ososanya, Esther, Cotae, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218186/ https://www.ncbi.nlm.nih.gov/pubmed/37239532 http://dx.doi.org/10.3390/ijerph20105803 |
Ejemplares similares
-
Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine learning on COVID-19 vaccination Twitter dataset
por: Qorib, Miftahul, et al.
Publicado: (2023) -
Sentimental and spatial analysis of COVID-19 vaccines tweets
por: Umair, Areeba, et al.
Publicado: (2022) -
COVID-19 topics and emotional frames in vaccine hesitation: A social media text and sentiment analysis
por: Sussman, Kristen L., et al.
Publicado: (2023) -
Sentiment analysis tracking of COVID-19 vaccine through tweets
por: Sarirete, Akila
Publicado: (2022) -
COVID-19 Vaccine Tweets After Vaccine Rollout: Sentiment–Based Topic Modeling
por: Huangfu, Luwen, et al.
Publicado: (2022)