Cargando…
The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae
Blast, caused by Magnaporthe oryzae, is one of the most destructive diseases affecting rice production. Understanding population dynamics of the pathogen’s avirulence genes is pre-required for breeding and then deploying new cultivars carrying promising resistance genes. The divergence and populatio...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218241/ https://www.ncbi.nlm.nih.gov/pubmed/37239425 http://dx.doi.org/10.3390/genes14051065 |
_version_ | 1785048727134666752 |
---|---|
author | Wang, Xing Wu, Weihuai Zhang, Yaling Li, Cheng Wang, Jinyan Wen, Jianqiang Zhang, Shulin Yao, Yongxiang Lu, Weisheng Zhao, Zhenghong Zhan, Jiasui Pan, Qinghua |
author_facet | Wang, Xing Wu, Weihuai Zhang, Yaling Li, Cheng Wang, Jinyan Wen, Jianqiang Zhang, Shulin Yao, Yongxiang Lu, Weisheng Zhao, Zhenghong Zhan, Jiasui Pan, Qinghua |
author_sort | Wang, Xing |
collection | PubMed |
description | Blast, caused by Magnaporthe oryzae, is one of the most destructive diseases affecting rice production. Understanding population dynamics of the pathogen’s avirulence genes is pre-required for breeding and then deploying new cultivars carrying promising resistance genes. The divergence and population structure of AvrPii was dissected in the populations of southern (Guangdong, Hunan, and Guizhou) and northern (Jilin, Liaoning, and Heilongjiang) China, via population genetic and evolutionary approaches. The evolutionary divergence between a known haplotype AvrPii-J and a novel one AvrPii-C was demonstrated by haplotype-specific amplicon-based sequencing and genetic transformation. The different avirulent performances of a set of seven haplotype-chimeric mutants suggested that the integrity of the full-length gene structures is crucial to express functionality of individual haplotypes. All the four combinations of phenotypes/genotypes were detected in the three southern populations, and only two in the northern three, suggesting that genic diversity in the southern region was higher than those in the northern one. The population structure of the AvrPii family was shaped by balancing, purifying, and positive selection pressures in the Chinese populations. The AvrPii-J was recognized as the wild type that emerged before rice domestication. Considering higher frequencies of avirulent isolates were detected in Hunan, Guizhou, and Liaoning, the cognate resistance gene Pii could be continuously used as a basic and critical resistance resource in such regions. The unique population structures of the AvrPii family found in China have significant implications for understanding how the AvrPii family has kept an artful balance and purity among its members (haplotypes) those keenly interact with Pii under gene-for-gene relationships. The lesson learned from case studies on the AvrPii family is that much attention should be paid to haplotype divergence of target gene. |
format | Online Article Text |
id | pubmed-10218241 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102182412023-05-27 The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae Wang, Xing Wu, Weihuai Zhang, Yaling Li, Cheng Wang, Jinyan Wen, Jianqiang Zhang, Shulin Yao, Yongxiang Lu, Weisheng Zhao, Zhenghong Zhan, Jiasui Pan, Qinghua Genes (Basel) Article Blast, caused by Magnaporthe oryzae, is one of the most destructive diseases affecting rice production. Understanding population dynamics of the pathogen’s avirulence genes is pre-required for breeding and then deploying new cultivars carrying promising resistance genes. The divergence and population structure of AvrPii was dissected in the populations of southern (Guangdong, Hunan, and Guizhou) and northern (Jilin, Liaoning, and Heilongjiang) China, via population genetic and evolutionary approaches. The evolutionary divergence between a known haplotype AvrPii-J and a novel one AvrPii-C was demonstrated by haplotype-specific amplicon-based sequencing and genetic transformation. The different avirulent performances of a set of seven haplotype-chimeric mutants suggested that the integrity of the full-length gene structures is crucial to express functionality of individual haplotypes. All the four combinations of phenotypes/genotypes were detected in the three southern populations, and only two in the northern three, suggesting that genic diversity in the southern region was higher than those in the northern one. The population structure of the AvrPii family was shaped by balancing, purifying, and positive selection pressures in the Chinese populations. The AvrPii-J was recognized as the wild type that emerged before rice domestication. Considering higher frequencies of avirulent isolates were detected in Hunan, Guizhou, and Liaoning, the cognate resistance gene Pii could be continuously used as a basic and critical resistance resource in such regions. The unique population structures of the AvrPii family found in China have significant implications for understanding how the AvrPii family has kept an artful balance and purity among its members (haplotypes) those keenly interact with Pii under gene-for-gene relationships. The lesson learned from case studies on the AvrPii family is that much attention should be paid to haplotype divergence of target gene. MDPI 2023-05-11 /pmc/articles/PMC10218241/ /pubmed/37239425 http://dx.doi.org/10.3390/genes14051065 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Xing Wu, Weihuai Zhang, Yaling Li, Cheng Wang, Jinyan Wen, Jianqiang Zhang, Shulin Yao, Yongxiang Lu, Weisheng Zhao, Zhenghong Zhan, Jiasui Pan, Qinghua The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae |
title | The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae |
title_full | The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae |
title_fullStr | The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae |
title_full_unstemmed | The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae |
title_short | The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae |
title_sort | lesson learned from the unique evolutionary story of avirulence gene avrpii of magnaporthe oryzae |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218241/ https://www.ncbi.nlm.nih.gov/pubmed/37239425 http://dx.doi.org/10.3390/genes14051065 |
work_keys_str_mv | AT wangxing thelessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT wuweihuai thelessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT zhangyaling thelessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT licheng thelessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT wangjinyan thelessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT wenjianqiang thelessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT zhangshulin thelessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT yaoyongxiang thelessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT luweisheng thelessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT zhaozhenghong thelessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT zhanjiasui thelessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT panqinghua thelessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT wangxing lessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT wuweihuai lessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT zhangyaling lessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT licheng lessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT wangjinyan lessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT wenjianqiang lessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT zhangshulin lessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT yaoyongxiang lessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT luweisheng lessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT zhaozhenghong lessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT zhanjiasui lessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae AT panqinghua lessonlearnedfromtheuniqueevolutionarystoryofavirulencegeneavrpiiofmagnaportheoryzae |