Cargando…
Statistical Machine-Learning Methods for Genomic Prediction Using the SKM Library
Genomic selection (GS) is revolutionizing plant breeding. However, because it is a predictive methodology, a basic understanding of statistical machine-learning methods is necessary for its successful implementation. This methodology uses a reference population that contains both the phenotypic and...
Autores principales: | Montesinos López, Osval A., Mosqueda González, Brandon Alejandro, Montesinos López, Abelardo, Crossa, José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218433/ https://www.ncbi.nlm.nih.gov/pubmed/37239363 http://dx.doi.org/10.3390/genes14051003 |
Ejemplares similares
-
A Comparison of Three Machine Learning Methods for Multivariate Genomic Prediction Using the Sparse Kernels Method (SKM) Library
por: Montesinos-López, Osval A., et al.
Publicado: (2022) -
A General-Purpose Machine Learning R Library for Sparse Kernels Methods With an Application for Genome-Based Prediction
por: Montesinos López, Osval Antonio, et al.
Publicado: (2022) -
A New Deep Learning Calibration Method Enhances Genome-Based Prediction of Continuous Crop Traits
por: Montesinos-López, Osval A., et al.
Publicado: (2021) -
Multi-trait genome prediction of new environments with partial least squares
por: Montesinos-López, Osval A., et al.
Publicado: (2022) -
A novel method for genomic-enabled prediction of cultivars in new environments
por: Montesinos-López, Osval A., et al.
Publicado: (2023)