Cargando…
Domain-specific transfer learning in the automated scoring of tumor-stroma ratio from histopathological images of colorectal cancer
Tumor-stroma ratio (TSR) is a prognostic factor for many types of solid tumors. In this study, we propose a method for automated estimation of TSR from histopathological images of colorectal cancer. The method is based on convolutional neural networks which were trained to classify colorectal cancer...
Autores principales: | Petäinen, Liisa, Väyrynen, Juha P., Ruusuvuori, Pekka, Pölönen, Ilkka, Äyrämö, Sami, Kuopio, Teijo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218718/ https://www.ncbi.nlm.nih.gov/pubmed/37235626 http://dx.doi.org/10.1371/journal.pone.0286270 |
Ejemplares similares
-
Improved accuracy in colorectal cancer tissue decomposition through refinement of established deep learning solutions
por: Prezja, Fabi, et al.
Publicado: (2023) -
DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification
por: Prezja, Fabi, et al.
Publicado: (2022) -
Immune Contexture of MMR-Proficient Primary Colorectal Cancer and Matched Liver and Lung Metastases
por: Ahtiainen, Maarit, et al.
Publicado: (2021) -
Immunoscore in mismatch repair‐proficient and ‐deficient colon cancer
por: Wirta, Erkki‐Ville, et al.
Publicado: (2017) -
Multilabel segmentation of cancer cell culture on vascular structures with deep neural networks
por: Rahkonen, Samuli, et al.
Publicado: (2020)