Cargando…
Real-Time Machine Learning-Based Driver Drowsiness Detection Using Visual Features
Drowsiness-related car accidents continue to have a significant effect on road safety. Many of these accidents can be eliminated by alerting the drivers once they start feeling drowsy. This work presents a non-invasive system for real-time driver drowsiness detection using visual features. These fea...
Autores principales: | Albadawi, Yaman, AlRedhaei, Aneesa, Takruri, Maen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10219078/ https://www.ncbi.nlm.nih.gov/pubmed/37233309 http://dx.doi.org/10.3390/jimaging9050091 |
Ejemplares similares
-
A Review of Recent Developments in Driver Drowsiness Detection Systems
por: Albadawi, Yaman, et al.
Publicado: (2022) -
Driver Drowsiness Detection: A Machine Learning Approach on Skin Conductance
por: Amidei, Andrea, et al.
Publicado: (2023) -
Real Time Driver’s Drowsiness Detection by Processing the EEG Signals Stimulated with External Flickering Light
por: Hashemi, Amjad, et al.
Publicado: (2014) -
Examining the Suitability of NetFlow Features in Detecting IoT Network Intrusions
por: Awad, Mohammed, et al.
Publicado: (2022) -
Non-Invasive Driver Drowsiness Detection System
por: Siddiqui, Hafeez Ur Rehman, et al.
Publicado: (2021)