Cargando…
Effect of Splinting on Orthodontic Mini-Implant Tipping and Bone Histomorphometric Parameters: An In Vivo Animal Model Study
This study aimed to address the stability of orthodontic mini-implants submitted to an immediate orthodontic functional load, in splinted or unsplinted conditions, further characterizing the histomorphometric parameters of the neighboring bone tissue, in an in vivo experimental model. Mini-implants...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10219099/ https://www.ncbi.nlm.nih.gov/pubmed/37233349 http://dx.doi.org/10.3390/jfb14050239 |
Sumario: | This study aimed to address the stability of orthodontic mini-implants submitted to an immediate orthodontic functional load, in splinted or unsplinted conditions, further characterizing the histomorphometric parameters of the neighboring bone tissue, in an in vivo experimental model. Mini-implants (1.4 × 6.0 mm) were placed in the proximal tibia of New Zealand White rabbits and immediately loaded with a 150 g force. Tissue healing was characterized within 8 weeks. Microtomography was used to assess the mini-implants’ tipping and bone histomorphometric indexes. Loaded implants were evaluated in splinted and unsplinted conditions, with data being compared to that of unloaded mini-implants with the Kruskal–Wallis nonparametric test, followed by Dunn’s multiple comparison tests. The splinting of mini-implants submitted to immediate orthodontic loading significantly reduced the tipping to levels similar to those of unloaded mini-implants. Immediate loading further increased the histomorphometric indexes associated with bone formation at the peri-implant region, in both splinted and unsplinted conditions, with no significant differences between the tension and compression regions. Accordingly, within this experimental setting, splinting was found to lessen tipping and mini-implants’ displacement, without affecting the increased bone formation at the peri-implant region, induced by a functional orthodontic load. |
---|