Cargando…

Cellular Alterations in Carbohydrate and Lipid Metabolism Due to Interactions with Nanomaterials

Nanoparticles (NPs) have unique physicochemical properties that are useful for a broad range of biomedical and industrial applications; nevertheless, increasing concern exists about their biosafety. This review aims to focus on the implications of nanoparticles in cellular metabolism and their outco...

Descripción completa

Detalles Bibliográficos
Autores principales: Martín-Pardillos, Ana, Martin-Duque, Pilar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10219260/
https://www.ncbi.nlm.nih.gov/pubmed/37233384
http://dx.doi.org/10.3390/jfb14050274
Descripción
Sumario:Nanoparticles (NPs) have unique physicochemical properties that are useful for a broad range of biomedical and industrial applications; nevertheless, increasing concern exists about their biosafety. This review aims to focus on the implications of nanoparticles in cellular metabolism and their outcomes. In particular, some NPs have the ability to modify glucose and lipid metabolism, and this feature is especially interesting to treat diabetes and obesity and to target cancer cells. However, the lack of specificity to reach target cells and the toxicological evaluation of nontargeted cells can potentially induce detrimental side effects, closely related to inflammation and oxidative stress. Therefore, identifying the metabolic alterations caused by NPs, independent of their application, is highly needed. To our knowledge, this increase would lead to the improvement and safer use with a reduced toxicity, increasing the number of available NPs for diagnosis and treatment of human diseases.