Cargando…
Light-driven dandelion-inspired microfliers
In nature, many plants have evolved diverse flight mechanisms to disperse seeds by wind and propagate their genetic information. Inspired by the flight mechanism of the dandelion seeds, we demonstrate light-driven dandelion-inspired microfliers based on ultralight and super-sensitive tubular-shaped...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10219969/ https://www.ncbi.nlm.nih.gov/pubmed/37236989 http://dx.doi.org/10.1038/s41467-023-38792-z |
Sumario: | In nature, many plants have evolved diverse flight mechanisms to disperse seeds by wind and propagate their genetic information. Inspired by the flight mechanism of the dandelion seeds, we demonstrate light-driven dandelion-inspired microfliers based on ultralight and super-sensitive tubular-shaped bimorph soft actuator. Like dandelion seeds in nature, the falling velocity of the as-proposed microflier in air can be facilely controlled by tailoring the degree of deformation of the “pappus” under different light irradiations. Importantly, the resulting microflier is able to achieve a mid-air flight above a light source with a sustained flight time of ~8.9 s and a maximum flight height of ~350 mm thanks to the unique dandelion-like 3D structures. Unexpectedly, the resulting microflier is found to exhibit light-driven upward flight accompanied by autorotating motion, and the rotation mode can be customized in either a clockwise or counterclockwise direction by engineering the shape programmability of bimorph soft actuator films. The research disclosed herein can offer new insights into the development of untethered and energy-efficient artificial aerial vehicles that are of paramount significance for many applications from environmental monitoring and wireless communication to future solar sail and robotic spacecraft. |
---|