Cargando…
General nonlinear Hall current in magnetic insulators beyond the quantum anomalous Hall effect
Can a generic magnetic insulator exhibit a Hall current? The quantum anomalous Hall effect (QAHE) is one example of an insulating bulk carrying a quantized Hall conductivity while insulators with zero Chern number present zero Hall conductance in the linear response regime. Here, we find that a gene...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10219989/ https://www.ncbi.nlm.nih.gov/pubmed/37236923 http://dx.doi.org/10.1038/s41467-023-38734-9 |
Sumario: | Can a generic magnetic insulator exhibit a Hall current? The quantum anomalous Hall effect (QAHE) is one example of an insulating bulk carrying a quantized Hall conductivity while insulators with zero Chern number present zero Hall conductance in the linear response regime. Here, we find that a general magnetic insulator possesses a nonlinear Hall conductivity quadratic to the electric field if the system breaks inversion symmetry, which can be identified as a new type of multiferroic coupling. This conductivity originates from an induced orbital magnetization due to virtual interband transitions. We identify three contributions to the wavepacket motion, a velocity shift, a positional shift, and a Berry curvature renormalization. In contrast to the crystalline solid, we find that this nonlinear Hall conductivity vanishes for Landau levels of a 2D electron gas, indicating a fundamental difference between the QAHE and the integer quantum Hall effect. |
---|