Cargando…
Machine learning survival models trained on clinical data to identify high risk patients with hormone responsive HER2 negative breast cancer
For endocrine-positive Her2 negative breast cancer patients at an early stage, the benefit of adding chemotherapy to adjuvant endocrine therapy is not still confirmed. Several genomic tests are available on the market but are very expensive. Therefore, there is the urgent need to explore novel relia...
Autores principales: | Fanizzi, Annarita, Pomarico, Domenico, Rizzo, Alessandro, Bove, Samantha, Comes, Maria Colomba, Didonna, Vittorio, Giotta, Francesco, La Forgia, Daniele, Latorre, Agnese, Pastena, Maria Irene, Petruzzellis, Nicole, Rinaldi, Lucia, Tamborra, Pasquale, Zito, Alfredo, Lorusso, Vito, Massafra, Raffaella |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220052/ https://www.ncbi.nlm.nih.gov/pubmed/37237020 http://dx.doi.org/10.1038/s41598-023-35344-9 |
Ejemplares similares
-
A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients
por: Bove, Samantha, et al.
Publicado: (2022) -
Robustness Evaluation of a Deep Learning Model on Sagittal and Axial Breast DCE-MRIs to Predict Pathological Complete Response to Neoadjuvant Chemotherapy
por: Massafra, Raffaella, et al.
Publicado: (2022) -
Predicting of Sentinel Lymph Node Status in Breast Cancer Patients with Clinically Negative Nodes: A Validation Study
por: Fanizzi, Annarita, et al.
Publicado: (2021) -
A machine learning ensemble approach for 5- and 10-year breast cancer invasive disease event classification
por: Massafra, Raffaella, et al.
Publicado: (2022) -
An Invasive Disease Event-Free Survival Analysis to Investigate Ki67 Role with Respect to Breast Cancer Patients’ Age: A Retrospective Cohort Study
por: Massafra, Raffaella, et al.
Publicado: (2022)