Cargando…
Evaluation of motion artefact reduction depending on the artefacts’ directions in head MRI using conditional generative adversarial networks
Motion artefacts caused by the patient’s body movements affect magnetic resonance imaging (MRI) accuracy. This study aimed to compare and evaluate the accuracy of motion artefacts correction using a conditional generative adversarial network (CGAN) with an autoencoder and U-net models. The training...
Autores principales: | Usui, Keisuke, Muro, Isao, Shibukawa, Syuhei, Goto, Masami, Ogawa, Koichi, Sakano, Yasuaki, Kyogoku, Shinsuke, Daida, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220077/ https://www.ncbi.nlm.nih.gov/pubmed/37237139 http://dx.doi.org/10.1038/s41598-023-35794-1 |
Ejemplares similares
-
A cycle generative adversarial network for improving the quality of four-dimensional cone-beam computed tomography images
por: Usui, Keisuke, et al.
Publicado: (2022) -
Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography
por: Usui, Keisuke, et al.
Publicado: (2021) -
Exploring the origins of EEG motion artefacts during simultaneous fMRI acquisition: Implications for motion artefact correction
por: Spencer, Glyn S., et al.
Publicado: (2018) -
Comparison of Motion Artefact Reduction Methods and the Implementation of Adaptive Motion Artefact Reduction in Wearable Electrocardiogram Monitoring
por: An, Xiang, et al.
Publicado: (2020) -
Artefacts in histopathology
por: Chatterjee, Shailja
Publicado: (2014)