Cargando…
Super-resolution 4D flow MRI to quantify aortic regurgitation using computational fluid dynamics and deep learning
Changes in cardiovascular hemodynamics are closely related to the development of aortic regurgitation (AR), a type of valvular heart disease. Metrics derived from blood flows are used to indicate AR onset and evaluate its severity. These metrics can be non-invasively obtained using four-dimensional...
Autores principales: | Long, Derek, McMurdo, Cameron, Ferdian, Edward, Mauger, Charlène A., Marlevi, David, Nash, Martyn P., Young, Alistair A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220149/ https://www.ncbi.nlm.nih.gov/pubmed/36820960 http://dx.doi.org/10.1007/s10554-023-02815-z |
Ejemplares similares
-
WSSNet: Aortic Wall Shear Stress Estimation Using Deep Learning on 4D Flow MRI
por: Ferdian, Edward, et al.
Publicado: (2022) -
Generalized super-resolution 4D Flow MRI $\unicode{x2013}$ using
ensemble learning to extend across the cardiovascular system
por: Ericsson, Leon, et al.
Publicado: (2023) -
Unbalanced SSFP for super-resolution in MRI
por: Lally, Peter J., et al.
Publicado: (2021) -
Quantifying accuracy and heterogeneity in single-molecule super-resolution microscopy
por: Mazidi, Hesam, et al.
Publicado: (2020) -
Super-resolution reconstruction in ultrahigh-field MRI
por: Payne, Macy, et al.
Publicado: (2023)