Cargando…

Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots

Semiconducting colloidal quantum dots and their assemblies exhibit superior optical properties owing to the quantum confinement effect. Thus, they are attracting tremendous interest from fundamental research to commercial applications. However, the electrical conducting properties remain detrimental...

Descripción completa

Detalles Bibliográficos
Autores principales: Septianto, Ricky Dwi, Miranti, Retno, Kikitsu, Tomoka, Hikima, Takaaki, Hashizume, Daisuke, Matsushita, Nobuhiro, Iwasa, Yoshihiro, Bisri, Satria Zulkarnaen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220219/
https://www.ncbi.nlm.nih.gov/pubmed/37236922
http://dx.doi.org/10.1038/s41467-023-38216-y
_version_ 1785049172190167040
author Septianto, Ricky Dwi
Miranti, Retno
Kikitsu, Tomoka
Hikima, Takaaki
Hashizume, Daisuke
Matsushita, Nobuhiro
Iwasa, Yoshihiro
Bisri, Satria Zulkarnaen
author_facet Septianto, Ricky Dwi
Miranti, Retno
Kikitsu, Tomoka
Hikima, Takaaki
Hashizume, Daisuke
Matsushita, Nobuhiro
Iwasa, Yoshihiro
Bisri, Satria Zulkarnaen
author_sort Septianto, Ricky Dwi
collection PubMed
description Semiconducting colloidal quantum dots and their assemblies exhibit superior optical properties owing to the quantum confinement effect. Thus, they are attracting tremendous interest from fundamental research to commercial applications. However, the electrical conducting properties remain detrimental predominantly due to the orientational disorder of quantum dots in the assembly. Here we report high conductivity and the consequent metallic behaviour of semiconducting colloidal quantum dots of lead sulphide. Precise facet orientation control to forming highly-ordered quasi-2-dimensional epitaxially-connected quantum dot superlattices is vital for high conductivity. The intrinsically high mobility over 10 cm(2) V(−1) s(−1) and temperature-independent behaviour proved the high potential of semiconductor quantum dots for electrical conducting properties. Furthermore, the continuously tunable subband filling will enable quantum dot superlattices to be a future platform for emerging physical properties investigations, such as strongly correlated and topological states, as demonstrated in the moiré superlattices of twisted bilayer graphene.
format Online
Article
Text
id pubmed-10220219
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-102202192023-05-28 Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots Septianto, Ricky Dwi Miranti, Retno Kikitsu, Tomoka Hikima, Takaaki Hashizume, Daisuke Matsushita, Nobuhiro Iwasa, Yoshihiro Bisri, Satria Zulkarnaen Nat Commun Article Semiconducting colloidal quantum dots and their assemblies exhibit superior optical properties owing to the quantum confinement effect. Thus, they are attracting tremendous interest from fundamental research to commercial applications. However, the electrical conducting properties remain detrimental predominantly due to the orientational disorder of quantum dots in the assembly. Here we report high conductivity and the consequent metallic behaviour of semiconducting colloidal quantum dots of lead sulphide. Precise facet orientation control to forming highly-ordered quasi-2-dimensional epitaxially-connected quantum dot superlattices is vital for high conductivity. The intrinsically high mobility over 10 cm(2) V(−1) s(−1) and temperature-independent behaviour proved the high potential of semiconductor quantum dots for electrical conducting properties. Furthermore, the continuously tunable subband filling will enable quantum dot superlattices to be a future platform for emerging physical properties investigations, such as strongly correlated and topological states, as demonstrated in the moiré superlattices of twisted bilayer graphene. Nature Publishing Group UK 2023-05-26 /pmc/articles/PMC10220219/ /pubmed/37236922 http://dx.doi.org/10.1038/s41467-023-38216-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Septianto, Ricky Dwi
Miranti, Retno
Kikitsu, Tomoka
Hikima, Takaaki
Hashizume, Daisuke
Matsushita, Nobuhiro
Iwasa, Yoshihiro
Bisri, Satria Zulkarnaen
Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots
title Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots
title_full Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots
title_fullStr Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots
title_full_unstemmed Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots
title_short Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots
title_sort enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220219/
https://www.ncbi.nlm.nih.gov/pubmed/37236922
http://dx.doi.org/10.1038/s41467-023-38216-y
work_keys_str_mv AT septiantorickydwi enablingmetallicbehaviourintwodimensionalsuperlatticeofsemiconductorcolloidalquantumdots
AT mirantiretno enablingmetallicbehaviourintwodimensionalsuperlatticeofsemiconductorcolloidalquantumdots
AT kikitsutomoka enablingmetallicbehaviourintwodimensionalsuperlatticeofsemiconductorcolloidalquantumdots
AT hikimatakaaki enablingmetallicbehaviourintwodimensionalsuperlatticeofsemiconductorcolloidalquantumdots
AT hashizumedaisuke enablingmetallicbehaviourintwodimensionalsuperlatticeofsemiconductorcolloidalquantumdots
AT matsushitanobuhiro enablingmetallicbehaviourintwodimensionalsuperlatticeofsemiconductorcolloidalquantumdots
AT iwasayoshihiro enablingmetallicbehaviourintwodimensionalsuperlatticeofsemiconductorcolloidalquantumdots
AT bisrisatriazulkarnaen enablingmetallicbehaviourintwodimensionalsuperlatticeofsemiconductorcolloidalquantumdots