Cargando…
Transition dynamics between a novel coinfection model of fractional-order for COVID-19 and tuberculosis via a treatment mechanism
In this paper, a fractional-order coinfection model for the transmission dynamics of COVID-19 and tuberculosis is presented. The positivity and boundedness of the proposed coinfection model are derived. The equilibria and basic reproduction number of the COVID-19 sub-model, Tuberculosis sub-model, a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220349/ https://www.ncbi.nlm.nih.gov/pubmed/37274455 http://dx.doi.org/10.1140/epjp/s13360-023-04095-x |
Sumario: | In this paper, a fractional-order coinfection model for the transmission dynamics of COVID-19 and tuberculosis is presented. The positivity and boundedness of the proposed coinfection model are derived. The equilibria and basic reproduction number of the COVID-19 sub-model, Tuberculosis sub-model, and COVID-19 and Tuberculosis coinfection model are derived. The local and global stability of both the COVID-19 and Tuberculosis sub-models are discussed. The equilibria of the coinfection model are locally asymptotically stable under certain conditions. Later, the impact of COVID-19 on TB and TB on COVID-19 is analyzed. Finally, the numerical simulation is carried out to assess the effect of various biological parameters in the transmission dynamics of COVID-19 and Tuberculosis coinfection. |
---|