Cargando…
Incorporation of MPCM on cotton fabric for potential application in hospital bed sheet
Over the last few decades, phase change materials (PCM) have attracted a great deal of interest in medical textiles due to its superior thermoregulation system, simple application, and so on. Patients, however, confined to bed in a medical facility face the serious risk of developing bed sores, whic...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220357/ https://www.ncbi.nlm.nih.gov/pubmed/37251461 http://dx.doi.org/10.1016/j.heliyon.2023.e16412 |
Sumario: | Over the last few decades, phase change materials (PCM) have attracted a great deal of interest in medical textiles due to its superior thermoregulation system, simple application, and so on. Patients, however, confined to bed in a medical facility face the serious risk of developing bed sores, which is not mitigated by the use of a standard bed sheet. Numerous articles and patents have been studied related to development of thermal bed sheets using PCM applied by various techniques; however, no such initiates was found to prepare and characterize of hospital bed sheets using microencapsulated phase change material (MPCM) through screen printing method. Thus, this study aims to develop a hospital bed sheet constructed from cotton fabric incorporated with MPCM. To accomplish this, MPCM was mixed into the printing paste that had been applied on the fabric by screen printing method, and then dried at room temperature. Thermal behavior, thermal transition, and thermal conductivity of the developed samples had been investigated. Moisture management properties, mechanical properties, and bonding behavior of the samples were also examined. Scanning electron microscope (SEM) was used to analyze the sample's morphology, and a differential scanning calorimeter (DSC) was used to determine how polymeric materials behaved when heated. Thermogravimetric analysis (TGA) demonstrated that the MPCM incorporated sample lost weight slowly, while the DSC test confirmed that melting began at 20 °C and ended at 30 °C. Furthermore, fabricated sample had higher heat conductivity (0.1760822 w.m(−1) k(−1)). Overall, the results revealed a great potential for using the developed samples as hospital bed sheets to prevent patients from developing bed sores. |
---|