Cargando…
Artificial neural network for flood susceptibility mapping in Bangladesh
The objective of the research is to investigate flood susceptibility in the Sylhet division of Bangladesh. Eight influential factors (i.e., elevation, slope, aspect, curvature, TWI, SPI, roughness, and LULC) were applied as inputs to the model. In this work, 1280 samples were taken at different loca...
Autores principales: | Rudra, Rhyme Rubayet, Sarkar, Showmitra Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220377/ https://www.ncbi.nlm.nih.gov/pubmed/37251459 http://dx.doi.org/10.1016/j.heliyon.2023.e16459 |
Ejemplares similares
-
Coupling of machine learning and remote sensing for soil salinity mapping in coastal area of Bangladesh
por: Sarkar, Showmitra Kumar, et al.
Publicado: (2023) -
Groundwater potential mapping in Jashore, Bangladesh
por: Fatema, Kaniz, et al.
Publicado: (2023) -
Analyzing the spatio-temporal directions of air pollutants for the initial wave of Covid-19 epidemic over Bangladesh: Application of satellite imageries and Google Earth Engine
por: Haque, Md. Nazmul, et al.
Publicado: (2022) -
Spatio-temporal variability of vegetation and its relation to different hydroclimatic factors in Bangladesh
por: Das, Swadhin, et al.
Publicado: (2023) -
A GIS-Based Artificial Neural Network Model for Flood Susceptibility Assessment
por: Khoirunisa, Nanda, et al.
Publicado: (2021)