Cargando…

Experimental Study of Thermal and Fire Reaction Properties of Glass Fiber/Bismaleimide Composites for Aeronautic Application

Thermal behavior and fire reaction properties of aerial glass fiber (GF)/bismaleimide (BMI) composites were tested using thermogravimetric analysis (TGA), thermogravimetric coupled with Fourier transform infrared spectroscopy (TG-FTIR), cone calorimeter, limiting oxygen index, and smoke density cham...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Gang, Qu, Fang, Wang, Zhi, Xiong, Xuhai, Xu, Yanying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220578/
https://www.ncbi.nlm.nih.gov/pubmed/37242848
http://dx.doi.org/10.3390/polym15102275
Descripción
Sumario:Thermal behavior and fire reaction properties of aerial glass fiber (GF)/bismaleimide (BMI) composites were tested using thermogravimetric analysis (TGA), thermogravimetric coupled with Fourier transform infrared spectroscopy (TG-FTIR), cone calorimeter, limiting oxygen index, and smoke density chamber. The results showed that the pyrolysis process was one stage in a nitrogen atmosphere with the prominent volatile components of CO(2), H(2)O, CH(4), NO(x), and SO(2). The release of heat and smoke increased with the increase in heat flux, while the time required to reach hazardous conditions decreased. The limiting oxygen index decreased monotonically from 47.8% to 39.0% with increasing experimental temperature. The maximum specific optical density within 20 min in the non-flaming mode was greater than that in the flaming mode. According to the four kinds of fire hazard assessment indicators, the greater the heat flux, the higher the fire hazard, for the contribution of more decomposed components. The calculations of two indices confirmed that the smoke release in the early stage of fire was more negative under flaming mode. This work can provide a comprehensive understanding of the thermal and fire characteristics of GF/BMI composites used for aircraft.