Cargando…

Effects of Orientation and Dispersion on Electrical Conductivity and Mechanical Properties of Carbon Nanotube/Polypropylene Composite

The orientation and dispersion of nanoparticles can greatly influence the conductivity and mechanical properties of nanocomposites. In this study, the Polypropylene/ Carbon Nanotubes (PP/CNTs) nanocomposites were produced using three different molding methods, i.e., compression molding (CM), convent...

Descripción completa

Detalles Bibliográficos
Autores principales: Mi, Dashan, Zhao, Zhongguo, Bai, Haiqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220618/
https://www.ncbi.nlm.nih.gov/pubmed/37242948
http://dx.doi.org/10.3390/polym15102370
Descripción
Sumario:The orientation and dispersion of nanoparticles can greatly influence the conductivity and mechanical properties of nanocomposites. In this study, the Polypropylene/ Carbon Nanotubes (PP/CNTs) nanocomposites were produced using three different molding methods, i.e., compression molding (CM), conventional injection molding (IM), and interval injection molding (IntM). Various CNTs content and shear conditions give CNTs different dispersion and orientation states. Then, three electrical percolation thresholds (4 wt.% CM, 6 wt.% IM, and 9 wt.% IntM) were obtained by various CNTs dispersion and orientations. Agglomerate dispersion (Adis), agglomerate orientation (Aori), and molecular orientation (Mori) are used to quantify the CNTs dispersion and orientation degree. IntM uses high shear to break the agglomerates and promote the Aori, Mori, and Adis. Large Aori and Mori can create a path along the flow direction, which lead to an electrical anisotropy of nearly six orders of magnitude in the flow and transverse direction. On the other hand, when CM and IM samples already build the conductive network, IntM can triple the Adis and destroy the network. Moreover, mechanical properties are also been discussed, such as the increase in tensile strength with Aori and Mori but showing independence with Adis. This paper proves that the high dispersion of CNTs agglomerate goes against forming a conductivity network. At the same time, the increased orientation of CNTs causes the electric current to flow only in the orientation direction. It helps to prepare PP/CNTs nanocomposites on demand by understanding the influence of CNTs dispersion and orientation on mechanical and electrical properties.