Cargando…

Metal-Organic Framework-Based Nanomedicines for the Treatment of Intracellular Bacterial Infections

Metal-organic frameworks (MOFs) are a highly versatile class of ordered porous materials, which hold great promise for different biomedical applications, including antibacterial therapy. In light of the antibacterial effects, these nanomaterials can be attractive for several reasons. First, MOFs exh...

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Xiaoli, Shen, Ningfei, Al Othman, Aya, Mezentsev, Alexandre, Permyakova, Anastasia, Yu, Zhihao, Lepoitevin, Mathilde, Serre, Christian, Durymanov, Mikhail
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220673/
https://www.ncbi.nlm.nih.gov/pubmed/37242762
http://dx.doi.org/10.3390/pharmaceutics15051521
Descripción
Sumario:Metal-organic frameworks (MOFs) are a highly versatile class of ordered porous materials, which hold great promise for different biomedical applications, including antibacterial therapy. In light of the antibacterial effects, these nanomaterials can be attractive for several reasons. First, MOFs exhibit a high loading capacity for numerous antibacterial drugs, including antibiotics, photosensitizers, and/or photothermal molecules. The inherent micro- or meso-porosity of MOF structures enables their use as nanocarriers for simultaneous encapsulation of multiple drugs resulting in a combined therapeutic effect. In addition to being encapsulated into an MOF’s pores, antibacterial agents can sometimes be directly incorporated into an MOF skeleton as organic linkers. Next, MOFs contain coordinated metal ions in their structure. Incorporation of Fe(2/3+), Cu(2+), Zn(2+), Co(2+), and Ag(+) can significantly increase the innate cytotoxicity of these materials for bacteria and cause a synergistic effect. Finally, abundance of functional groups enables modifying the external surface of MOF particles with stealth coating and ligand moieties for improved drug delivery. To date, there are a number of MOF-based nanomedicines available for the treatment of bacterial infections. This review is focused on biomedical consideration of MOF nano-formulations designed for the therapy of intracellular infections such as Staphylococcus aureus, Mycobacterium tuberculosis, and Chlamydia trachomatis. Increasing knowledge about the ability of MOF nanoparticles to accumulate in a pathogen intracellular niche in the host cells provides an excellent opportunity to use MOF-based nanomedicines for the eradication of persistent infections. Here, we discuss advantages and current limitations of MOFs, their clinical significance, and their prospects for the treatment of the mentioned infections.