Cargando…
Strain Virtual Sensing for Structural Health Monitoring under Variable Loads
Virtual sensing is the process of using available data from real sensors in combination with a model of the system to obtain estimated data from unmeasured points. In this article, different strain virtual sensing algorithms are tested using real sensor data, under unmeasured different forces applie...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220708/ https://www.ncbi.nlm.nih.gov/pubmed/37430622 http://dx.doi.org/10.3390/s23104706 |
_version_ | 1785049282324201472 |
---|---|
author | Mora, Bartomeu Basurko, Jon Sabahi, Iman Leturiondo, Urko Albizuri, Joseba |
author_facet | Mora, Bartomeu Basurko, Jon Sabahi, Iman Leturiondo, Urko Albizuri, Joseba |
author_sort | Mora, Bartomeu |
collection | PubMed |
description | Virtual sensing is the process of using available data from real sensors in combination with a model of the system to obtain estimated data from unmeasured points. In this article, different strain virtual sensing algorithms are tested using real sensor data, under unmeasured different forces applied in different directions. Stochastic algorithms (Kalman filter and augmented Kalman filter) and deterministic algorithms (least-squares strain estimation) are tested with different input sensor configurations. A wind turbine prototype is used to apply the virtual sensing algorithms and evaluate the obtained estimations. An inertial shaker is installed on the top of the prototype, with a rotational base, to generate different external forces in different directions. The results obtained in the performed tests are analyzed to determine the most efficient sensor configurations capable of obtaining accurate estimates. Results show that it is possible to obtain accurate strain estimations at unmeasured points of a structure under an unknown loading condition, using measured strain data from a set of points and a sufficiently accurate FE model as input and applying the augmented Kalman filter or the least-squares strain estimation in combination with modal truncation and expansion techniques. |
format | Online Article Text |
id | pubmed-10220708 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102207082023-05-28 Strain Virtual Sensing for Structural Health Monitoring under Variable Loads Mora, Bartomeu Basurko, Jon Sabahi, Iman Leturiondo, Urko Albizuri, Joseba Sensors (Basel) Article Virtual sensing is the process of using available data from real sensors in combination with a model of the system to obtain estimated data from unmeasured points. In this article, different strain virtual sensing algorithms are tested using real sensor data, under unmeasured different forces applied in different directions. Stochastic algorithms (Kalman filter and augmented Kalman filter) and deterministic algorithms (least-squares strain estimation) are tested with different input sensor configurations. A wind turbine prototype is used to apply the virtual sensing algorithms and evaluate the obtained estimations. An inertial shaker is installed on the top of the prototype, with a rotational base, to generate different external forces in different directions. The results obtained in the performed tests are analyzed to determine the most efficient sensor configurations capable of obtaining accurate estimates. Results show that it is possible to obtain accurate strain estimations at unmeasured points of a structure under an unknown loading condition, using measured strain data from a set of points and a sufficiently accurate FE model as input and applying the augmented Kalman filter or the least-squares strain estimation in combination with modal truncation and expansion techniques. MDPI 2023-05-12 /pmc/articles/PMC10220708/ /pubmed/37430622 http://dx.doi.org/10.3390/s23104706 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mora, Bartomeu Basurko, Jon Sabahi, Iman Leturiondo, Urko Albizuri, Joseba Strain Virtual Sensing for Structural Health Monitoring under Variable Loads |
title | Strain Virtual Sensing for Structural Health Monitoring under Variable Loads |
title_full | Strain Virtual Sensing for Structural Health Monitoring under Variable Loads |
title_fullStr | Strain Virtual Sensing for Structural Health Monitoring under Variable Loads |
title_full_unstemmed | Strain Virtual Sensing for Structural Health Monitoring under Variable Loads |
title_short | Strain Virtual Sensing for Structural Health Monitoring under Variable Loads |
title_sort | strain virtual sensing for structural health monitoring under variable loads |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220708/ https://www.ncbi.nlm.nih.gov/pubmed/37430622 http://dx.doi.org/10.3390/s23104706 |
work_keys_str_mv | AT morabartomeu strainvirtualsensingforstructuralhealthmonitoringundervariableloads AT basurkojon strainvirtualsensingforstructuralhealthmonitoringundervariableloads AT sabahiiman strainvirtualsensingforstructuralhealthmonitoringundervariableloads AT leturiondourko strainvirtualsensingforstructuralhealthmonitoringundervariableloads AT albizurijoseba strainvirtualsensingforstructuralhealthmonitoringundervariableloads |