Cargando…

An Improved Blind Zone Channelization Structure and Rapid Implementation Method

The paper proposes an enhanced design for broadband digital receivers that aims to improve signal capture probability, real-time performance, and the hardware development cycle. To overcome the issue of false signals in the blind zone channelization structure, this paper introduces an improved joint...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Ziliang, Liu, Hongxia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220748/
https://www.ncbi.nlm.nih.gov/pubmed/37241713
http://dx.doi.org/10.3390/mi14051091
Descripción
Sumario:The paper proposes an enhanced design for broadband digital receivers that aims to improve signal capture probability, real-time performance, and the hardware development cycle. To overcome the issue of false signals in the blind zone channelization structure, this paper introduces an improved joint-decision channelization structure that reduces channel ambiguity during signal reception. Xilinx’s high-level synthesis (HLS) tools are used for accelerated algorithm implementation, and techniques such as pipelining and loop parallelization are employed to reduce system latency. The entire system is implemented on FPGA. The simulation results demonstrate that the proposed solution effectively eliminates channel ambiguity, improves algorithm implementation speed, and meets the design requirements.