Cargando…
Machine Learning Generation of Dynamic Protein Conformational Ensembles
Machine learning has achieved remarkable success across a broad range of scientific and engineering disciplines, particularly its use for predicting native protein structures from sequence information alone. However, biomolecules are inherently dynamic, and there is a pressing need for accurate pred...
Autores principales: | Zheng, Li-E, Barethiya, Shrishti, Nordquist, Erik, Chen, Jianhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220786/ https://www.ncbi.nlm.nih.gov/pubmed/37241789 http://dx.doi.org/10.3390/molecules28104047 |
Ejemplares similares
-
Incorporating physics to overcome data scarcity in predictive modeling of protein function: a case study of BK channels
por: Nordquist, Erik, et al.
Publicado: (2023) -
Incorporating physics to overcome data scarcity in predictive modeling of protein function: A case study of BK channels
por: Nordquist, Erik, et al.
Publicado: (2023) -
Direct generation of protein conformational ensembles via machine learning
por: Janson, Giacomo, et al.
Publicado: (2023) -
Machine learning/molecular dynamic protein structure prediction approach to investigate the protein conformational ensemble
por: Audagnotto, Martina, et al.
Publicado: (2022) -
Modulation of the Disordered Conformational Ensembles of the p53 Transactivation Domain by Cancer-Associated Mutations
por: Ganguly, Debabani, et al.
Publicado: (2015)