Cargando…

Investigation of Fenebrutinib Metabolism and Bioactivation Using MS(3) Methodology in Ion Trap LC/MS

Fenebrutinib is an orally available Bruton tyrosine kinase inhibitor. It is currently in multiple phase III clinical trials for the management of B-cell tumors and autoimmune disorders. Elementary in-silico studies were first performed to predict susceptible sites of metabolism and structural alerts...

Descripción completa

Detalles Bibliográficos
Autores principales: Alsibaee, Aishah M., Aljohar, Haya I., Attwa, Mohamed W., Abdelhameed, Ali S., Kadi, Adnan A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220799/
https://www.ncbi.nlm.nih.gov/pubmed/37241965
http://dx.doi.org/10.3390/molecules28104225
_version_ 1785049303890264064
author Alsibaee, Aishah M.
Aljohar, Haya I.
Attwa, Mohamed W.
Abdelhameed, Ali S.
Kadi, Adnan A.
author_facet Alsibaee, Aishah M.
Aljohar, Haya I.
Attwa, Mohamed W.
Abdelhameed, Ali S.
Kadi, Adnan A.
author_sort Alsibaee, Aishah M.
collection PubMed
description Fenebrutinib is an orally available Bruton tyrosine kinase inhibitor. It is currently in multiple phase III clinical trials for the management of B-cell tumors and autoimmune disorders. Elementary in-silico studies were first performed to predict susceptible sites of metabolism and structural alerts for toxicities by StarDrop WhichP450™ module and DEREK software; respectively. Fenebrutinib metabolites and adducts were characterized in-vitro in rat liver microsomes (RLM) using MS3 method in Ion Trap LC-MS/MS. Formation of reactive and unstable intermediates was explored using potassium cyanide (KCN), glutathione (GSH) and methoxylamine as trapping nucleophiles to capture the transient and unstable iminium, 6-iminopyridin-3(6H)-one and aldehyde intermediates, respectively, to generate a stable adducts that can be investigated and analyzed using mass spectrometry. Ten phase I metabolites, four cyanide adducts, five GSH adducts and six methoxylamine adducts of fenebrutinib were identified. The proposed metabolic reactions involved in formation of these metabolites are hydroxylation, oxidation of primary alcohol to aldehyde, n-oxidation, and n-dealkylation. The mechanism of reactive intermediate formation of fenebrutinib can provide a justification of the cause of its adverse effects. Formation of iminium, iminoquinone and aldehyde intermediates of fenebrutinib was characterized. N-dealkylation followed by hydroxylation of the piperazine ring is proposed to cause the bioactivation to iminium intermediates captured by cyanide. Oxidation of the hydroxymethyl group on the pyridine moiety is proposed to cause the generation of reactive aldehyde intermediates captures by methoxylamine. N-dealkylation and hydroxylation of the pyridine ring is proposed to cause formation of iminoquinone reactive intermediates captured by glutathione. FBB and several phase I metabolites are bioactivated to fifteen reactive intermediates which might be the cause of adverse effects. In the future, drug discovery experiments utilizing this information could be performed, permitting the synthesis of new drugs with better safety profile. Overall, in silico software and in vitro metabolic incubation experiments were able to characterize the FBB metabolites and reactive intermediates using the multistep fragmentation capability of ion trap mass spectrometry.
format Online
Article
Text
id pubmed-10220799
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102207992023-05-28 Investigation of Fenebrutinib Metabolism and Bioactivation Using MS(3) Methodology in Ion Trap LC/MS Alsibaee, Aishah M. Aljohar, Haya I. Attwa, Mohamed W. Abdelhameed, Ali S. Kadi, Adnan A. Molecules Article Fenebrutinib is an orally available Bruton tyrosine kinase inhibitor. It is currently in multiple phase III clinical trials for the management of B-cell tumors and autoimmune disorders. Elementary in-silico studies were first performed to predict susceptible sites of metabolism and structural alerts for toxicities by StarDrop WhichP450™ module and DEREK software; respectively. Fenebrutinib metabolites and adducts were characterized in-vitro in rat liver microsomes (RLM) using MS3 method in Ion Trap LC-MS/MS. Formation of reactive and unstable intermediates was explored using potassium cyanide (KCN), glutathione (GSH) and methoxylamine as trapping nucleophiles to capture the transient and unstable iminium, 6-iminopyridin-3(6H)-one and aldehyde intermediates, respectively, to generate a stable adducts that can be investigated and analyzed using mass spectrometry. Ten phase I metabolites, four cyanide adducts, five GSH adducts and six methoxylamine adducts of fenebrutinib were identified. The proposed metabolic reactions involved in formation of these metabolites are hydroxylation, oxidation of primary alcohol to aldehyde, n-oxidation, and n-dealkylation. The mechanism of reactive intermediate formation of fenebrutinib can provide a justification of the cause of its adverse effects. Formation of iminium, iminoquinone and aldehyde intermediates of fenebrutinib was characterized. N-dealkylation followed by hydroxylation of the piperazine ring is proposed to cause the bioactivation to iminium intermediates captured by cyanide. Oxidation of the hydroxymethyl group on the pyridine moiety is proposed to cause the generation of reactive aldehyde intermediates captures by methoxylamine. N-dealkylation and hydroxylation of the pyridine ring is proposed to cause formation of iminoquinone reactive intermediates captured by glutathione. FBB and several phase I metabolites are bioactivated to fifteen reactive intermediates which might be the cause of adverse effects. In the future, drug discovery experiments utilizing this information could be performed, permitting the synthesis of new drugs with better safety profile. Overall, in silico software and in vitro metabolic incubation experiments were able to characterize the FBB metabolites and reactive intermediates using the multistep fragmentation capability of ion trap mass spectrometry. MDPI 2023-05-22 /pmc/articles/PMC10220799/ /pubmed/37241965 http://dx.doi.org/10.3390/molecules28104225 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Alsibaee, Aishah M.
Aljohar, Haya I.
Attwa, Mohamed W.
Abdelhameed, Ali S.
Kadi, Adnan A.
Investigation of Fenebrutinib Metabolism and Bioactivation Using MS(3) Methodology in Ion Trap LC/MS
title Investigation of Fenebrutinib Metabolism and Bioactivation Using MS(3) Methodology in Ion Trap LC/MS
title_full Investigation of Fenebrutinib Metabolism and Bioactivation Using MS(3) Methodology in Ion Trap LC/MS
title_fullStr Investigation of Fenebrutinib Metabolism and Bioactivation Using MS(3) Methodology in Ion Trap LC/MS
title_full_unstemmed Investigation of Fenebrutinib Metabolism and Bioactivation Using MS(3) Methodology in Ion Trap LC/MS
title_short Investigation of Fenebrutinib Metabolism and Bioactivation Using MS(3) Methodology in Ion Trap LC/MS
title_sort investigation of fenebrutinib metabolism and bioactivation using ms(3) methodology in ion trap lc/ms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220799/
https://www.ncbi.nlm.nih.gov/pubmed/37241965
http://dx.doi.org/10.3390/molecules28104225
work_keys_str_mv AT alsibaeeaishahm investigationoffenebrutinibmetabolismandbioactivationusingms3methodologyiniontraplcms
AT aljoharhayai investigationoffenebrutinibmetabolismandbioactivationusingms3methodologyiniontraplcms
AT attwamohamedw investigationoffenebrutinibmetabolismandbioactivationusingms3methodologyiniontraplcms
AT abdelhameedalis investigationoffenebrutinibmetabolismandbioactivationusingms3methodologyiniontraplcms
AT kadiadnana investigationoffenebrutinibmetabolismandbioactivationusingms3methodologyiniontraplcms