Cargando…

Cone-Shell Quantum Structures in Electric and Magnetic Fields as Switchable Traps for Photoexcited Charge Carriers

The optical emission of cone-shell quantum structures (CSQS) under vertical electric (F) and magnetic (B) fields is studied by means of simulations. A CSQS has a unique shape, where an electric field induces the transformation of the hole probability density from a disk into a quantum-ring with a tu...

Descripción completa

Detalles Bibliográficos
Autores principales: Heyn, Christian, Ranasinghe, Leonardo, Alshaikh, Ahmed, Duque, Carlos A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221091/
https://www.ncbi.nlm.nih.gov/pubmed/37242112
http://dx.doi.org/10.3390/nano13101696
Descripción
Sumario:The optical emission of cone-shell quantum structures (CSQS) under vertical electric (F) and magnetic (B) fields is studied by means of simulations. A CSQS has a unique shape, where an electric field induces the transformation of the hole probability density from a disk into a quantum-ring with a tunable radius. The present study addresses the influence of an additional magnetic field. A common description for the influence of a B-field on charge carriers confined in a quantum dot is the Fock-Darwin model, which introduces the angular momentum quantum number l to describe the splitting of the energy levels. For a CSQS with the hole in the quantum ring state, the present simulations demonstrate a B-dependence of the hole energy which substantially deviates from the prediction of the Fock-Darwin model. In particular, the energy of exited states with a hole [Formula: see text] 0 can become lower than the ground state energy with [Formula: see text] 0. Because for the lowest-energy state the electron [Formula: see text] is always zero, states with [Formula: see text] 0 are optically dark due to selection rules. This allows switching from a bright state ([Formula: see text] 0) to a dark state ([Formula: see text] 0) or vice versa by changing the strength of the F or B field. This effect can be very interesting for trapping photoexcited charge carriers for a desired time. Furthermore, the influence of the CSQS shape on the fields required for the bright to dark state transition is investigated.