Cargando…
Explainability-Informed Feature Selection and Performance Prediction for Nonintrusive Load Monitoring †
With the massive, worldwide, smart metering roll-out, both energy suppliers and users are starting to tap into the potential of higher resolution energy readings for accurate billing, improved demand response, improved tariffs better tuned to users and the grid, and empowering end-users to know how...
Autores principales: | Mollel, Rachel Stephen, Stankovic, Lina, Stankovic, Vladimir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221163/ https://www.ncbi.nlm.nih.gov/pubmed/37430758 http://dx.doi.org/10.3390/s23104845 |
Ejemplares similares
-
A Field Study of Nonintrusive Load Monitoring Devices and Implications for Load Disaggregation
por: Mayhorn, Ebony, et al.
Publicado: (2023) -
Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature
por: Kim, Jihyun, et al.
Publicado: (2017) -
Corrigendum to “Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature”
por: Kim, Jihyun, et al.
Publicado: (2018) -
Nonintrusive Appliance Load Monitoring: An Overview, Laboratory Test Results and Research Directions
por: Wójcik, Augustyn, et al.
Publicado: (2019) -
Semi-Supervised Domain Adaptation for Multi-Label Classification on Nonintrusive Load Monitoring
por: Hur, Cheong-Hwan, et al.
Publicado: (2022)