Cargando…
Deep Reinforcement Learning for Joint Trajectory Planning, Transmission Scheduling, and Access Control in UAV-Assisted Wireless Sensor Networks
Unmanned aerial vehicles (UAVs) can be used to relay sensing information and computational workloads from ground users (GUs) to a remote base station (RBS) for further processing. In this paper, we employ multiple UAVs to assist with the collection of sensing information in a terrestrial wireless se...
Autores principales: | Luo, Xiaoling, Chen, Che, Zeng, Chunnian, Li, Chengtao, Xu, Jing, Gong, Shimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221232/ https://www.ncbi.nlm.nih.gov/pubmed/37430608 http://dx.doi.org/10.3390/s23104691 |
Ejemplares similares
-
Trajectory Optimization of Laser-Charged UAVs for Charging Wireless Rechargeable Sensor Networks
por: Liu, Ning, et al.
Publicado: (2022) -
A Goal-Directed Trajectory Planning Using Active Inference in UAV-Assisted Wireless Networks
por: Krayani, Ali, et al.
Publicado: (2023) -
UAV Enhanced Target-Barrier Coverage Algorithm for Wireless Sensor Networks Based on Reinforcement Learning
por: Li, Li, et al.
Publicado: (2022) -
Trajectory Design for Multi-UAV-Aided Wireless Power Transfer toward Future Wireless Systems
por: Mu, Jun, et al.
Publicado: (2022) -
Transmission Scheduling Schemes of Industrial Wireless Sensors for Heterogeneous Multiple Control Systems
por: Park, Bongsang, et al.
Publicado: (2018)