Cargando…
Construction of Bio-TiO(2)/Algae Complex and Synergetic Mechanism of the Acceleration of Phenol Biodegradation
Microalgae have been widely employed in water pollution treatment since they are eco-friendly and economical. However, the relatively slow treatment rate and low toxic tolerance have seriously limited their utilization in numerous conditions. In light of the problems above, a novel biosynthetic tita...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221352/ https://www.ncbi.nlm.nih.gov/pubmed/37241509 http://dx.doi.org/10.3390/ma16103882 |
_version_ | 1785049435631255552 |
---|---|
author | Guo, Jinxin Guo, Xiaoman Yang, Haiyan Zhang, Daohong Jiang, Xiaogeng |
author_facet | Guo, Jinxin Guo, Xiaoman Yang, Haiyan Zhang, Daohong Jiang, Xiaogeng |
author_sort | Guo, Jinxin |
collection | PubMed |
description | Microalgae have been widely employed in water pollution treatment since they are eco-friendly and economical. However, the relatively slow treatment rate and low toxic tolerance have seriously limited their utilization in numerous conditions. In light of the problems above, a novel biosynthetic titanium dioxide (bio-TiO(2) NPs)—microalgae synergetic system (Bio-TiO(2)/Algae complex) has been established and adopted for phenol degradation in the study. The great biocompatibility of bio-TiO(2) NPs ensured the collaboration with microalgae, improving the phenol degradation rate by 2.27 times compared to that with single microalgae. Remarkably, this system increased the toxicity tolerance of microalgae, represented as promoted extracellular polymeric substances EPS secretion (5.79 times than single algae), and significantly reduced the levels of malondialdehyde and superoxide dismutase. The boosted phenol biodegradation with Bio-TiO(2)/Algae complex may be attributed to the synergetic interaction of bio-TiO(2) NPs and microalgae, which led to the decreased bandgap, suppressed recombination rate, and accelerated electron transfer (showed as low electron transfer resistance, larger capacitance, and higher exchange current density), resulting in increased light energy utilization rate and photocatalytic rate. The results of the work provide a new understanding of the low-carbon treatment of toxic organic wastewater and lay a foundation for further remediation application. |
format | Online Article Text |
id | pubmed-10221352 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102213522023-05-28 Construction of Bio-TiO(2)/Algae Complex and Synergetic Mechanism of the Acceleration of Phenol Biodegradation Guo, Jinxin Guo, Xiaoman Yang, Haiyan Zhang, Daohong Jiang, Xiaogeng Materials (Basel) Article Microalgae have been widely employed in water pollution treatment since they are eco-friendly and economical. However, the relatively slow treatment rate and low toxic tolerance have seriously limited their utilization in numerous conditions. In light of the problems above, a novel biosynthetic titanium dioxide (bio-TiO(2) NPs)—microalgae synergetic system (Bio-TiO(2)/Algae complex) has been established and adopted for phenol degradation in the study. The great biocompatibility of bio-TiO(2) NPs ensured the collaboration with microalgae, improving the phenol degradation rate by 2.27 times compared to that with single microalgae. Remarkably, this system increased the toxicity tolerance of microalgae, represented as promoted extracellular polymeric substances EPS secretion (5.79 times than single algae), and significantly reduced the levels of malondialdehyde and superoxide dismutase. The boosted phenol biodegradation with Bio-TiO(2)/Algae complex may be attributed to the synergetic interaction of bio-TiO(2) NPs and microalgae, which led to the decreased bandgap, suppressed recombination rate, and accelerated electron transfer (showed as low electron transfer resistance, larger capacitance, and higher exchange current density), resulting in increased light energy utilization rate and photocatalytic rate. The results of the work provide a new understanding of the low-carbon treatment of toxic organic wastewater and lay a foundation for further remediation application. MDPI 2023-05-22 /pmc/articles/PMC10221352/ /pubmed/37241509 http://dx.doi.org/10.3390/ma16103882 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guo, Jinxin Guo, Xiaoman Yang, Haiyan Zhang, Daohong Jiang, Xiaogeng Construction of Bio-TiO(2)/Algae Complex and Synergetic Mechanism of the Acceleration of Phenol Biodegradation |
title | Construction of Bio-TiO(2)/Algae Complex and Synergetic Mechanism of the Acceleration of Phenol Biodegradation |
title_full | Construction of Bio-TiO(2)/Algae Complex and Synergetic Mechanism of the Acceleration of Phenol Biodegradation |
title_fullStr | Construction of Bio-TiO(2)/Algae Complex and Synergetic Mechanism of the Acceleration of Phenol Biodegradation |
title_full_unstemmed | Construction of Bio-TiO(2)/Algae Complex and Synergetic Mechanism of the Acceleration of Phenol Biodegradation |
title_short | Construction of Bio-TiO(2)/Algae Complex and Synergetic Mechanism of the Acceleration of Phenol Biodegradation |
title_sort | construction of bio-tio(2)/algae complex and synergetic mechanism of the acceleration of phenol biodegradation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221352/ https://www.ncbi.nlm.nih.gov/pubmed/37241509 http://dx.doi.org/10.3390/ma16103882 |
work_keys_str_mv | AT guojinxin constructionofbiotio2algaecomplexandsynergeticmechanismoftheaccelerationofphenolbiodegradation AT guoxiaoman constructionofbiotio2algaecomplexandsynergeticmechanismoftheaccelerationofphenolbiodegradation AT yanghaiyan constructionofbiotio2algaecomplexandsynergeticmechanismoftheaccelerationofphenolbiodegradation AT zhangdaohong constructionofbiotio2algaecomplexandsynergeticmechanismoftheaccelerationofphenolbiodegradation AT jiangxiaogeng constructionofbiotio2algaecomplexandsynergeticmechanismoftheaccelerationofphenolbiodegradation |