Cargando…
DVDR-SRGAN: Differential Value Dense Residual Super-Resolution Generative Adversarial Network
In the field of single-image super-resolution reconstruction, GAN can obtain the image texture more in line with the human eye. However, during the reconstruction process, it is easy to generate artifacts, false textures, and large deviations in details between the reconstructed image and the Ground...
Autores principales: | Qu, Hang, Yi, Huawei, Shi, Yanlan, Lan, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221380/ https://www.ncbi.nlm.nih.gov/pubmed/37430768 http://dx.doi.org/10.3390/s23104854 |
Ejemplares similares
-
Super Resolution Generative Adversarial Network (SRGANs) for Wheat Stripe Rust Classification
por: Maqsood, Muhammad Hassan, et al.
Publicado: (2021) -
Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention
por: Hou, Zhongwei, et al.
Publicado: (2023) -
A multiresolution mixture generative adversarial network for video super-resolution
por: Tian, Zhiqiang, et al.
Publicado: (2020) -
Mask Attention-SRGAN for Mobile Sensing Networks
por: Huang, Chi-En, et al.
Publicado: (2021) -
SOUP-GAN: Super-Resolution MRI Using Generative Adversarial Networks
por: Zhang, Kuan, et al.
Publicado: (2022)