Cargando…

Parameter Identification of Model for Piezoelectric Actuators

Piezoelectric actuators are widely used in high-precision positioning systems. The nonlinear characteristics of piezoelectric actuators, such as multi-valued mapping and frequency-dependent hysteresis, severely limit the advancement of the positioning system’s accuracy. Therefore, a particle swarm g...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Dongmei, Dong, Jingqu, Guo, Shuai, Tan, Li, Yu, Shuyou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221398/
https://www.ncbi.nlm.nih.gov/pubmed/37241673
http://dx.doi.org/10.3390/mi14051050
_version_ 1785049446608797696
author Liu, Dongmei
Dong, Jingqu
Guo, Shuai
Tan, Li
Yu, Shuyou
author_facet Liu, Dongmei
Dong, Jingqu
Guo, Shuai
Tan, Li
Yu, Shuyou
author_sort Liu, Dongmei
collection PubMed
description Piezoelectric actuators are widely used in high-precision positioning systems. The nonlinear characteristics of piezoelectric actuators, such as multi-valued mapping and frequency-dependent hysteresis, severely limit the advancement of the positioning system’s accuracy. Therefore, a particle swarm genetic hybrid parameter identification method is proposed by combining the directivity of the particle swarm optimization algorithm and the genetic random characteristics of the genetic algorithm. Thus, the global search and optimization abilities of the parameter identification approach are improved, and the problems, including the genetic algorithm’s poor local search capability and the particle swarm optimization algorithm’s ease of falling into local optimal solutions, are resolved. The nonlinear hysteretic model of piezoelectric actuators is established based on the hybrid parameter identification algorithm proposed in this paper. The output of the model of the piezoelectric actuator is in accordance with the real output obtained from the experiments, and the root mean square error is only 0.029423 [Formula: see text]. The experimental and simulation results show that the model of piezoelectric actuators established by the proposed identification method can describe the multi-valued mapping and frequency-dependent nonlinear hysteresis characteristics of piezoelectric actuators.
format Online
Article
Text
id pubmed-10221398
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102213982023-05-28 Parameter Identification of Model for Piezoelectric Actuators Liu, Dongmei Dong, Jingqu Guo, Shuai Tan, Li Yu, Shuyou Micromachines (Basel) Article Piezoelectric actuators are widely used in high-precision positioning systems. The nonlinear characteristics of piezoelectric actuators, such as multi-valued mapping and frequency-dependent hysteresis, severely limit the advancement of the positioning system’s accuracy. Therefore, a particle swarm genetic hybrid parameter identification method is proposed by combining the directivity of the particle swarm optimization algorithm and the genetic random characteristics of the genetic algorithm. Thus, the global search and optimization abilities of the parameter identification approach are improved, and the problems, including the genetic algorithm’s poor local search capability and the particle swarm optimization algorithm’s ease of falling into local optimal solutions, are resolved. The nonlinear hysteretic model of piezoelectric actuators is established based on the hybrid parameter identification algorithm proposed in this paper. The output of the model of the piezoelectric actuator is in accordance with the real output obtained from the experiments, and the root mean square error is only 0.029423 [Formula: see text]. The experimental and simulation results show that the model of piezoelectric actuators established by the proposed identification method can describe the multi-valued mapping and frequency-dependent nonlinear hysteresis characteristics of piezoelectric actuators. MDPI 2023-05-15 /pmc/articles/PMC10221398/ /pubmed/37241673 http://dx.doi.org/10.3390/mi14051050 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liu, Dongmei
Dong, Jingqu
Guo, Shuai
Tan, Li
Yu, Shuyou
Parameter Identification of Model for Piezoelectric Actuators
title Parameter Identification of Model for Piezoelectric Actuators
title_full Parameter Identification of Model for Piezoelectric Actuators
title_fullStr Parameter Identification of Model for Piezoelectric Actuators
title_full_unstemmed Parameter Identification of Model for Piezoelectric Actuators
title_short Parameter Identification of Model for Piezoelectric Actuators
title_sort parameter identification of model for piezoelectric actuators
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221398/
https://www.ncbi.nlm.nih.gov/pubmed/37241673
http://dx.doi.org/10.3390/mi14051050
work_keys_str_mv AT liudongmei parameteridentificationofmodelforpiezoelectricactuators
AT dongjingqu parameteridentificationofmodelforpiezoelectricactuators
AT guoshuai parameteridentificationofmodelforpiezoelectricactuators
AT tanli parameteridentificationofmodelforpiezoelectricactuators
AT yushuyou parameteridentificationofmodelforpiezoelectricactuators