Cargando…
Parameter Identification of Model for Piezoelectric Actuators
Piezoelectric actuators are widely used in high-precision positioning systems. The nonlinear characteristics of piezoelectric actuators, such as multi-valued mapping and frequency-dependent hysteresis, severely limit the advancement of the positioning system’s accuracy. Therefore, a particle swarm g...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221398/ https://www.ncbi.nlm.nih.gov/pubmed/37241673 http://dx.doi.org/10.3390/mi14051050 |
_version_ | 1785049446608797696 |
---|---|
author | Liu, Dongmei Dong, Jingqu Guo, Shuai Tan, Li Yu, Shuyou |
author_facet | Liu, Dongmei Dong, Jingqu Guo, Shuai Tan, Li Yu, Shuyou |
author_sort | Liu, Dongmei |
collection | PubMed |
description | Piezoelectric actuators are widely used in high-precision positioning systems. The nonlinear characteristics of piezoelectric actuators, such as multi-valued mapping and frequency-dependent hysteresis, severely limit the advancement of the positioning system’s accuracy. Therefore, a particle swarm genetic hybrid parameter identification method is proposed by combining the directivity of the particle swarm optimization algorithm and the genetic random characteristics of the genetic algorithm. Thus, the global search and optimization abilities of the parameter identification approach are improved, and the problems, including the genetic algorithm’s poor local search capability and the particle swarm optimization algorithm’s ease of falling into local optimal solutions, are resolved. The nonlinear hysteretic model of piezoelectric actuators is established based on the hybrid parameter identification algorithm proposed in this paper. The output of the model of the piezoelectric actuator is in accordance with the real output obtained from the experiments, and the root mean square error is only 0.029423 [Formula: see text]. The experimental and simulation results show that the model of piezoelectric actuators established by the proposed identification method can describe the multi-valued mapping and frequency-dependent nonlinear hysteresis characteristics of piezoelectric actuators. |
format | Online Article Text |
id | pubmed-10221398 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102213982023-05-28 Parameter Identification of Model for Piezoelectric Actuators Liu, Dongmei Dong, Jingqu Guo, Shuai Tan, Li Yu, Shuyou Micromachines (Basel) Article Piezoelectric actuators are widely used in high-precision positioning systems. The nonlinear characteristics of piezoelectric actuators, such as multi-valued mapping and frequency-dependent hysteresis, severely limit the advancement of the positioning system’s accuracy. Therefore, a particle swarm genetic hybrid parameter identification method is proposed by combining the directivity of the particle swarm optimization algorithm and the genetic random characteristics of the genetic algorithm. Thus, the global search and optimization abilities of the parameter identification approach are improved, and the problems, including the genetic algorithm’s poor local search capability and the particle swarm optimization algorithm’s ease of falling into local optimal solutions, are resolved. The nonlinear hysteretic model of piezoelectric actuators is established based on the hybrid parameter identification algorithm proposed in this paper. The output of the model of the piezoelectric actuator is in accordance with the real output obtained from the experiments, and the root mean square error is only 0.029423 [Formula: see text]. The experimental and simulation results show that the model of piezoelectric actuators established by the proposed identification method can describe the multi-valued mapping and frequency-dependent nonlinear hysteresis characteristics of piezoelectric actuators. MDPI 2023-05-15 /pmc/articles/PMC10221398/ /pubmed/37241673 http://dx.doi.org/10.3390/mi14051050 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Dongmei Dong, Jingqu Guo, Shuai Tan, Li Yu, Shuyou Parameter Identification of Model for Piezoelectric Actuators |
title | Parameter Identification of Model for Piezoelectric Actuators |
title_full | Parameter Identification of Model for Piezoelectric Actuators |
title_fullStr | Parameter Identification of Model for Piezoelectric Actuators |
title_full_unstemmed | Parameter Identification of Model for Piezoelectric Actuators |
title_short | Parameter Identification of Model for Piezoelectric Actuators |
title_sort | parameter identification of model for piezoelectric actuators |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221398/ https://www.ncbi.nlm.nih.gov/pubmed/37241673 http://dx.doi.org/10.3390/mi14051050 |
work_keys_str_mv | AT liudongmei parameteridentificationofmodelforpiezoelectricactuators AT dongjingqu parameteridentificationofmodelforpiezoelectricactuators AT guoshuai parameteridentificationofmodelforpiezoelectricactuators AT tanli parameteridentificationofmodelforpiezoelectricactuators AT yushuyou parameteridentificationofmodelforpiezoelectricactuators |