Cargando…

Electrochemistry of Thin Films and Nanostructured Materials

In the last few decades, the development and use of thin films and nanostructured materials to enhance physical and chemical properties of materials has been common practice in the field of materials science and engineering. The progress which has recently been made in tailoring the unique propertie...

Descripción completa

Detalles Bibliográficos
Autor principal: Sulka, Grzegorz Dariusz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221442/
https://www.ncbi.nlm.nih.gov/pubmed/37241782
http://dx.doi.org/10.3390/molecules28104040
Descripción
Sumario:In the last few decades, the development and use of thin films and nanostructured materials to enhance physical and chemical properties of materials has been common practice in the field of materials science and engineering. The progress which has recently been made in tailoring the unique properties of thin films and nanostructured materials, such as a high surface area to volume ratio, surface charge, structure, anisotropic nature, and tunable functionalities, allow expanding the range of their possible applications from mechanical, structural, and protective coatings to electronics, energy storage systems, sensing, optoelectronics, catalysis, and biomedicine. Recent advances have also focused on the importance of electrochemistry in the fabrication and characterization of functional thin films and nanostructured materials, as well as various systems and devices based on these materials. Both cathodic and anodic processes are being extensively developed in order to elaborate new procedures and possibilities for the synthesis and characterization of thin films and nanostructured materials.