Cargando…

Labeling of Baropodometric Analysis Data Using Computer Vision Techniques in Classification of Foot Deformities

Background and Objectives: Foot deformities are the basis of numerous disorders of the locomotor system. An optimized method of classification of foot deformities would enable an objective identification of the type of deformity since the current assessment methods do not show an optimal level of ob...

Descripción completa

Detalles Bibliográficos
Autores principales: Babović, Siniša S., Vujović, Mia, Stilinović, Nebojša P., Jeftić, Ostoja, Novaković, Aleksa D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221479/
https://www.ncbi.nlm.nih.gov/pubmed/37241072
http://dx.doi.org/10.3390/medicina59050840
_version_ 1785049466016890880
author Babović, Siniša S.
Vujović, Mia
Stilinović, Nebojša P.
Jeftić, Ostoja
Novaković, Aleksa D.
author_facet Babović, Siniša S.
Vujović, Mia
Stilinović, Nebojša P.
Jeftić, Ostoja
Novaković, Aleksa D.
author_sort Babović, Siniša S.
collection PubMed
description Background and Objectives: Foot deformities are the basis of numerous disorders of the locomotor system. An optimized method of classification of foot deformities would enable an objective identification of the type of deformity since the current assessment methods do not show an optimal level of objectivity and reliability. The acquired results would enable an individual approach to the treatment of patients with foot deformities. Thus, the goal of this research study was the development of a new, objective model for recognizing and classifying foot deformities with the application of machine learning, by labeling baropodometric analysis data using computer vision methods. Materials and Methods: In this work, data from 91 students of the Faculty of Medicine and the Faculty of Sports and Physical Education, University of Novi Sad were used. Measurements were determined by using a baropodometric platform, and the labelling process was carried out in the Python programming language, using functions from the OpenCV library. Segmentation techniques, geometric transformations, contour detection and morphological image processing were performed on the images, in order to calculate the arch index, a parameter that gives information about the type of the foot deformity. Discussion: The foot over which the entire labeling method was applied had an arch index value of 0.27, which indicates the accuracy of the method and is in accordance with the literature. On the other hand, the method presented in our study needs further improvement and optimization, since the results of the segmentation techniques can vary when the images are not consistent. Conclusions: The labeling method presented in this work provides the basis for further optimization and development of a foot deformity classification system.
format Online
Article
Text
id pubmed-10221479
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102214792023-05-28 Labeling of Baropodometric Analysis Data Using Computer Vision Techniques in Classification of Foot Deformities Babović, Siniša S. Vujović, Mia Stilinović, Nebojša P. Jeftić, Ostoja Novaković, Aleksa D. Medicina (Kaunas) Technical Note Background and Objectives: Foot deformities are the basis of numerous disorders of the locomotor system. An optimized method of classification of foot deformities would enable an objective identification of the type of deformity since the current assessment methods do not show an optimal level of objectivity and reliability. The acquired results would enable an individual approach to the treatment of patients with foot deformities. Thus, the goal of this research study was the development of a new, objective model for recognizing and classifying foot deformities with the application of machine learning, by labeling baropodometric analysis data using computer vision methods. Materials and Methods: In this work, data from 91 students of the Faculty of Medicine and the Faculty of Sports and Physical Education, University of Novi Sad were used. Measurements were determined by using a baropodometric platform, and the labelling process was carried out in the Python programming language, using functions from the OpenCV library. Segmentation techniques, geometric transformations, contour detection and morphological image processing were performed on the images, in order to calculate the arch index, a parameter that gives information about the type of the foot deformity. Discussion: The foot over which the entire labeling method was applied had an arch index value of 0.27, which indicates the accuracy of the method and is in accordance with the literature. On the other hand, the method presented in our study needs further improvement and optimization, since the results of the segmentation techniques can vary when the images are not consistent. Conclusions: The labeling method presented in this work provides the basis for further optimization and development of a foot deformity classification system. MDPI 2023-04-26 /pmc/articles/PMC10221479/ /pubmed/37241072 http://dx.doi.org/10.3390/medicina59050840 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Technical Note
Babović, Siniša S.
Vujović, Mia
Stilinović, Nebojša P.
Jeftić, Ostoja
Novaković, Aleksa D.
Labeling of Baropodometric Analysis Data Using Computer Vision Techniques in Classification of Foot Deformities
title Labeling of Baropodometric Analysis Data Using Computer Vision Techniques in Classification of Foot Deformities
title_full Labeling of Baropodometric Analysis Data Using Computer Vision Techniques in Classification of Foot Deformities
title_fullStr Labeling of Baropodometric Analysis Data Using Computer Vision Techniques in Classification of Foot Deformities
title_full_unstemmed Labeling of Baropodometric Analysis Data Using Computer Vision Techniques in Classification of Foot Deformities
title_short Labeling of Baropodometric Analysis Data Using Computer Vision Techniques in Classification of Foot Deformities
title_sort labeling of baropodometric analysis data using computer vision techniques in classification of foot deformities
topic Technical Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221479/
https://www.ncbi.nlm.nih.gov/pubmed/37241072
http://dx.doi.org/10.3390/medicina59050840
work_keys_str_mv AT babovicsinisas labelingofbaropodometricanalysisdatausingcomputervisiontechniquesinclassificationoffootdeformities
AT vujovicmia labelingofbaropodometricanalysisdatausingcomputervisiontechniquesinclassificationoffootdeformities
AT stilinovicnebojsap labelingofbaropodometricanalysisdatausingcomputervisiontechniquesinclassificationoffootdeformities
AT jefticostoja labelingofbaropodometricanalysisdatausingcomputervisiontechniquesinclassificationoffootdeformities
AT novakovicaleksad labelingofbaropodometricanalysisdatausingcomputervisiontechniquesinclassificationoffootdeformities