Cargando…
A Self-Oscillating Driving Circuit for Low-Q MEMS Vibratory Gyroscopes
This article establishes a circuit model with which to analyze the difficulty of auto-gain control driving for low-Q micromechanical gyroscopes at room temperature and normal pressure. It also proposes a driving circuit based on frequency modulation to eliminate the same-frequency coupling between t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221486/ https://www.ncbi.nlm.nih.gov/pubmed/37241680 http://dx.doi.org/10.3390/mi14051057 |
Sumario: | This article establishes a circuit model with which to analyze the difficulty of auto-gain control driving for low-Q micromechanical gyroscopes at room temperature and normal pressure. It also proposes a driving circuit based on frequency modulation to eliminate the same-frequency coupling between the drive signal and displacement signal using a second harmonic demodulation circuit. The results of the simulation indicate that a closed-loop driving circuit system based on the frequency modulation principle can be established within 200 ms with a stable average frequency of 4504 Hz and a frequency deviation of 1 Hz. After the system was stabilized, the root mean square of the simulation data was taken, and the frequency jitter was 0.0221 Hz. |
---|