Cargando…

Effect of Recent Abortion Legislation on Twitter User Engagement, Sentiment, and Expressions of Trust in Clinicians and Privacy of Health Information: Content Analysis

BACKGROUND: The Supreme Court ruling in Dobbs v Jackson Women’s Health Organization (Dobbs) overrules precedents established by Roe v Wade and Planned Parenthood v Casey and allows states to individually regulate access to abortion care services. While many states have passed laws to protect access...

Descripción completa

Detalles Bibliográficos
Autores principales: Swanson, Karl, Ravi, Akshay, Saleh, Sameh, Weia, Benjamin, Pleasants, Elizabeth, Arvisais-Anhalt, Simone
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221497/
https://www.ncbi.nlm.nih.gov/pubmed/37171873
http://dx.doi.org/10.2196/46655
Descripción
Sumario:BACKGROUND: The Supreme Court ruling in Dobbs v Jackson Women’s Health Organization (Dobbs) overrules precedents established by Roe v Wade and Planned Parenthood v Casey and allows states to individually regulate access to abortion care services. While many states have passed laws to protect access to abortion services since the ruling, the ruling has also triggered the enforcement of existing laws and the creation of new ones that ban or restrict abortion. In addition to denying patients the full spectrum of reproductive health care, one major concern in the medical community is how the ruling will undermine trust in the patient-clinician relationship by influencing perceptions of the privacy of patient health information. OBJECTIVE: This study aimed to study the effect of recent abortion legislation on Twitter user engagement, sentiment, expressions of trust in clinicians, and privacy of health information. METHODS: We scraped tweets containing keywords of interest between January 1, 2020, and October 17, 2022, to capture tweets posted before and after the leak of the Supreme Court decision. We then trained a Latent Dirichlet Allocation model to select tweets pertinent to the topic of interest and performed a sentiment analysis using Robustly Optimized Bidirectional Encoder Representations from Transformers Pre-training Approach model and a causal impact time series analysis to examine engagement and sentiment. In addition, we used a Word2Vec model to study the terms of interest against a latent trust dimension to capture how expressions of trust for our terms of interest changed over time and used term frequency, inverse-document frequency to measure the volume of tweets before and after the decision with respect to the negative and positive sentiments that map to our terms of interest. RESULTS: Our study revealed (1) a transient increase in the number of daily users by 576.86% (95% CI 545.34%-607.92%; P<.001), tweeting about abortion, health care, and privacy of health information postdecision leak; (2) a sustained and statistically significant decrease in the average daily sentiment on these topics by 19.81% (95% CI −22.98% to −16.59%; P=.001) postdecision leak; (3) a decrease in the association of the latent dimension of trust across most clinician-related and health information–related terms of interest; (4) an increased frequency of tweets with these clinician-related and health information–related terms and concomitant negative sentiment in the postdecision leak period. CONCLUSIONS: The study suggests that the Dobbs ruling has consequences for health systems and reproductive health care that extend beyond denying patients access to the full spectrum of reproductive health services. The finding of a decrease in the expression of trust in clinicians and health information–related terms provides evidence to support advocacy and initiatives that proactively address concerns of trust in health systems and services.