Cargando…

Novel genetic modules encoding high‐level antibiotic‐free protein expression in probiotic lactobacilli

Lactobacilli are ubiquitous in nature, often beneficially associated with animals as commensals and probiotics, and are extensively used in food fermentation. Due to this close‐knit association, there is considerable interest to engineer them for healthcare applications in both humans and animals, f...

Descripción completa

Detalles Bibliográficos
Autores principales: Dey, Sourik, Blanch‐Asensio, Marc, Balaji Kuttae, Sanjana, Sankaran, Shrikrishnan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221531/
https://www.ncbi.nlm.nih.gov/pubmed/36722614
http://dx.doi.org/10.1111/1751-7915.14228
Descripción
Sumario:Lactobacilli are ubiquitous in nature, often beneficially associated with animals as commensals and probiotics, and are extensively used in food fermentation. Due to this close‐knit association, there is considerable interest to engineer them for healthcare applications in both humans and animals, for which high‐performance and versatile genetic parts are greatly desired. For the first time, we describe two genetic modules in Lactiplantibacillus plantarum that achieve high‐level gene expression using plasmids that can be retained without antibiotics, bacteriocins or genomic manipulations. These include (i) a promoter, P( tlpA ), from a phylogenetically distant bacterium, Salmonella typhimurium, which drives up to 5‐fold higher level of gene expression compared to previously reported promoters and (ii) multiple toxin‐antitoxin systems as a self‐contained and easy‐to‐implement plasmid retention strategy that facilitates the engineering of tuneable transient genetically modified organisms. These modules and the fundamental factors underlying their functionality that are described in this work will greatly contribute to expanding the genetic programmability of lactobacilli for healthcare applications.