Cargando…
EEG-Based Driver Fatigue Monitoring within a Human–Ship–Environment System: Implications for Ship Braking Safety
To address the uncontrollable risks associated with the overreliance on ship operators’ driving in current ship safety braking methods, this study aims to reduce the impact of operator fatigue on navigation safety. Firstly, this study established a human–ship–environment monitoring system with funct...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221629/ https://www.ncbi.nlm.nih.gov/pubmed/37430558 http://dx.doi.org/10.3390/s23104644 |
_version_ | 1785049501994582016 |
---|---|
author | Ren, Bin Guan, Wanli Zhou, Qinyu Wang, Zilin |
author_facet | Ren, Bin Guan, Wanli Zhou, Qinyu Wang, Zilin |
author_sort | Ren, Bin |
collection | PubMed |
description | To address the uncontrollable risks associated with the overreliance on ship operators’ driving in current ship safety braking methods, this study aims to reduce the impact of operator fatigue on navigation safety. Firstly, this study established a human–ship–environment monitoring system with functional and technical architecture, emphasizing the investigation of a ship braking model that integrates brain fatigue monitoring using electroencephalography (EEG) to reduce braking safety risks during navigation. Subsequently, the Stroop task experiment was employed to induce fatigue responses in drivers. By utilizing principal component analysis (PCA) to reduce dimensionality across multiple channels of the data acquisition device, this study extracted centroid frequency (CF) and power spectral entropy (PSE) features from channels 7 and 10. Additionally, a correlation analysis was conducted between these features and the Fatigue Severity Scale (FSS), a five-point scale for assessing fatigue severity in the subjects. This study established a model for scoring driver fatigue levels by selecting the three features with the highest correlation and utilizing ridge regression. The human–ship–environment monitoring system and fatigue prediction model proposed in this study, combined with the ship braking model, achieve a safer and more controllable ship braking process. By real-time monitoring and prediction of driver fatigue, appropriate measures can be taken in a timely manner to ensure navigation safety and driver health. |
format | Online Article Text |
id | pubmed-10221629 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102216292023-05-28 EEG-Based Driver Fatigue Monitoring within a Human–Ship–Environment System: Implications for Ship Braking Safety Ren, Bin Guan, Wanli Zhou, Qinyu Wang, Zilin Sensors (Basel) Article To address the uncontrollable risks associated with the overreliance on ship operators’ driving in current ship safety braking methods, this study aims to reduce the impact of operator fatigue on navigation safety. Firstly, this study established a human–ship–environment monitoring system with functional and technical architecture, emphasizing the investigation of a ship braking model that integrates brain fatigue monitoring using electroencephalography (EEG) to reduce braking safety risks during navigation. Subsequently, the Stroop task experiment was employed to induce fatigue responses in drivers. By utilizing principal component analysis (PCA) to reduce dimensionality across multiple channels of the data acquisition device, this study extracted centroid frequency (CF) and power spectral entropy (PSE) features from channels 7 and 10. Additionally, a correlation analysis was conducted between these features and the Fatigue Severity Scale (FSS), a five-point scale for assessing fatigue severity in the subjects. This study established a model for scoring driver fatigue levels by selecting the three features with the highest correlation and utilizing ridge regression. The human–ship–environment monitoring system and fatigue prediction model proposed in this study, combined with the ship braking model, achieve a safer and more controllable ship braking process. By real-time monitoring and prediction of driver fatigue, appropriate measures can be taken in a timely manner to ensure navigation safety and driver health. MDPI 2023-05-10 /pmc/articles/PMC10221629/ /pubmed/37430558 http://dx.doi.org/10.3390/s23104644 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ren, Bin Guan, Wanli Zhou, Qinyu Wang, Zilin EEG-Based Driver Fatigue Monitoring within a Human–Ship–Environment System: Implications for Ship Braking Safety |
title | EEG-Based Driver Fatigue Monitoring within a Human–Ship–Environment System: Implications for Ship Braking Safety |
title_full | EEG-Based Driver Fatigue Monitoring within a Human–Ship–Environment System: Implications for Ship Braking Safety |
title_fullStr | EEG-Based Driver Fatigue Monitoring within a Human–Ship–Environment System: Implications for Ship Braking Safety |
title_full_unstemmed | EEG-Based Driver Fatigue Monitoring within a Human–Ship–Environment System: Implications for Ship Braking Safety |
title_short | EEG-Based Driver Fatigue Monitoring within a Human–Ship–Environment System: Implications for Ship Braking Safety |
title_sort | eeg-based driver fatigue monitoring within a human–ship–environment system: implications for ship braking safety |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221629/ https://www.ncbi.nlm.nih.gov/pubmed/37430558 http://dx.doi.org/10.3390/s23104644 |
work_keys_str_mv | AT renbin eegbaseddriverfatiguemonitoringwithinahumanshipenvironmentsystemimplicationsforshipbrakingsafety AT guanwanli eegbaseddriverfatiguemonitoringwithinahumanshipenvironmentsystemimplicationsforshipbrakingsafety AT zhouqinyu eegbaseddriverfatiguemonitoringwithinahumanshipenvironmentsystemimplicationsforshipbrakingsafety AT wangzilin eegbaseddriverfatiguemonitoringwithinahumanshipenvironmentsystemimplicationsforshipbrakingsafety |