Cargando…
Exploring Transformer and Graph Convolutional Networks for Human Mobility Modeling
The estimation of human mobility patterns is essential for many components of developed societies, including the planning and management of urbanization, pollution, and disease spread. One important type of mobility estimator is the next-place predictors, which use previous mobility observations to...
Autores principales: | Corrias, Riccardo, Gjoreski, Martin, Langheinrich, Marc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221677/ https://www.ncbi.nlm.nih.gov/pubmed/37430716 http://dx.doi.org/10.3390/s23104803 |
Ejemplares similares
-
Federated Learning for Privacy-Aware Human Mobility Modeling
por: Ezequiel, Castro Elizondo Jose, et al.
Publicado: (2022) -
SGGformer: Shifted Graph Convolutional Graph-Transformer for Traffic Prediction
por: Pu, Shilin, et al.
Publicado: (2022) -
A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting
por: Li, Yulan, et al.
Publicado: (2022) -
STTG-net: a Spatio-temporal network for human motion prediction based on transformer and graph convolution network
por: Chen, Lujing, et al.
Publicado: (2022) -
Using Graph Attention Network and Graph Convolutional Network to Explore Human CircRNA–Disease Associations Based on Multi-Source Data
por: Li, Guanghui, et al.
Publicado: (2022)