Cargando…

Membrane Protein Bcest Is Involved in Hyphal Growth, Virulence and Stress Tolerance of Botrytis cinerea

Botrytis cinerea is a necrotrophic model fungal plant pathogen that causes grey mould, a devastating disease responsible for large losses in the agriculture sector. As important targets of fungicides, membrane proteins are hot spots in the research and development of fungicide products. We previousl...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Wei, Ge, Bei-Bei, Lv, Zhao-Yang, Park, Kyung Seok, Shi, Li-Ming, Zhang, Ke-Cheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221684/
https://www.ncbi.nlm.nih.gov/pubmed/37317199
http://dx.doi.org/10.3390/microorganisms11051225
Descripción
Sumario:Botrytis cinerea is a necrotrophic model fungal plant pathogen that causes grey mould, a devastating disease responsible for large losses in the agriculture sector. As important targets of fungicides, membrane proteins are hot spots in the research and development of fungicide products. We previously found that membrane protein Bcest may be closely related to the pathogenicity of Botrytis cinerea. Herein, we further explored its function. We generated and characterised ΔBcest deletion mutants of B. cinerea and constructed complemented strains. The ΔBcest deletion mutants exhibited reduced conidia germination and germ tube elongation. The functional activity of ΔBcest deletion mutants was investigated by reduced necrotic colonisation of B. cinerea on grapevine fruits and leaves. Targeted deletion of Bcest also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted-gene complementation. The role of Bcest in pathogenicity was also supported by reverse-transcriptase real-time quantitative PCR results indicating that melanin synthesis gene Bcpks13 and virulence factor Bccdc14 were significantly downregulated in the early infection stage of the ΔBcest strain. Taken together, these results suggest that Bcest plays important roles in the regulation of various cellular processes in B. cinerea.